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In this article we investigate the behavior of the scaling exponents of the KPZ equation 

through changing three parameters of the equation. In other words we would like to know 

how the growth exponent β and the roughness exponent α will change if the surface 

tension ν, the average velocity λ and the noise strength ϒ change. Using the discrete form 

of the equation, first we come to the results α = 0:5 and β = 0:33, then we change the 

parameters in the range of 0 to 3 by small amounts; we observe that the exponents change 

smoothly. In some limit states the KPZ equation transforms to the RD and RDSR 

equations. Fortunately this is highlighted in the figures. As the parameters change and 

approach the limit states, the KPZ universality class evolves to the RD and RDSR 

regimes.  

 

 اطلاعات مقاله چكيده
 

به بيان . از طريق تغييرات پارامتر هاي آن بحث مي كنيم  KPZدر اين مقاله ما در مورد رفتار نما هاي مقياس معادله 

 γو شدت نويز  λ، سرعت متوسط  νچگونه با تغيير دادن تنش سطحي  αو نماي زبري  βديگر مايليم بدانيم نماي رشد 

مي رسيم ، سپس پارامتر ها را در  α= 5/0و   β= 33/0ابتدا به نتايج  با استفاده از شكل گسسته معادله. تغيير مي كنند

در حالت هاي حدي . به مقدار كم تغيير مي دهيم ، مشاهده مي كنيم كه نما ها به آرامي تغيير مي كنند  3تا  0محدوده 

وقتي . ا ديده مي شود خوشبختانه اين موضوع در نمودار ه. تبديل مي شود  RDSRو   RDبه معادله هاي   KPZمعادله 

و   RDبه رژيم هاي  KPZكه پارامتر ها تغيير مي كنند و به حالت هاي حدي نزديك مي شوند كلاس جهاني معادله 

RDSR تبديل مي شود .  
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1 Introduction 
 

 The KPZ equation is a non-linear stochastic partial 

differential equation which was formulated by Mehran 

Kardar , Giorgio Parisi, and Yi-Cheng Zhang in 1986. It 

describes the temporal change of height ℎ(�, �) at 

location � and time. In one dimension it is formally 

written: 

 
ℎ(�, �)
� = ν∇�ℎ(�, �) +	�2	�∇ℎ(�, �)�� + 	�(�, �),					(1) 
  

where �(x , t) is a Gaussian white noise with average 〈�(�, �)〉 = 0 and a second moment expressed as: 

 〈�(�, �)	�(��, �′)〉 = 2	�	�(� − ��)�(� − ��),          (2) 

 

Where �	, �,	 and � are the parameters of the model [5]. 

 The KPZ equation is known to describe  nonequilibrium 

models such as BD, EDEN, SOS, etc. but it is not 

restricted to the subject of surface growth. In fact it has 

become a paradigm to govern a vast class of 

nonequilibrium phenomena. This equation has a close 

relationship with the Burgers equation [2] which is an 

important equation in the context of turbulence. The 

KPZ equation also maps to the directed polymers 

problem. It transforms to diffusion equation by means of 

Hopf-Cole transformation whose field can be interpreted 

as the partition function of the specific path of the 

directed polymers [1]. It has been shown that the 

formation of large scale structures from clusters in the 

universe to galaxy distribution is governed by the KPZ 

equation [9]. The roughening of flame fronts occurs in 

the KPZ equation universality class [3]. An important 

property of the KPZ equation is that besides temporal 

and special symmetries, it follows the Galilean 

invariance [4]. 

 Moving at a constant velocity � will not affect any 

physical law of the system such as equation of motion. 

This means that under these transformations the KPZ 

equation remains invariant : 

 � → � − ���								,											ℎ → ℎ + ��,																	         (3) 

 

It is equal to tilting the interface by infinitesimal angle, 

which lead to the result: 

 � +  = 2,                       (4) 

 

which is valid in any dimension, where   is the dynamic 

exponent defined as: 

  = 	�!.																																									(5) 
                      

 Of course in one case the Galilean invariance is broken 

and different scaling exponents result [6]. We can obtain 

the roughness exponent using the fluctuation- dissipation 

theorem in one dimension [1]. This theorem states that a 

change or fluctuation in the system will be dissipated as 

the system returns to equilibrium [8]. This can be seen in 

the stationary probability distribution: 

 $%& 	~ exp+− �2	� 	,-�	(
.ℎ)�/ ,																																					(6) 
 

which is exactly the stationary probability distribution 

for Edwards-Wilkinson equation. The roughness 

exponent of the EW equation is � = 0.5. So when the 

system in the KPZ model saturates and reaches the 

stationary state, it will behave like a system in the EW 

model, where the roughness exponent of the KPZ 

equation is	α = 0.5. 

 Many studies have been carried out regarding this 

equation, e.g. changing the angle of deposition of 

particles [10], working out the crossover in the equation 

due to different initial conditions [11], and highlighting 

the statistical viewpoint in its regard [12]. 

2 Solution of KPZ equation 
 

 Since the KPZ equation is nonlinear, it does not have 

any analytical solution.  A common way of treating this 

equation is to linearize it by means of the Hopf-Cole 

transformation [4]. 

ℎ(�, �) = 2�� ln�5(�, �)�.																																																			(7) 
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 Applying it to the KPZ equation, reaction – diffusion 

equation (diffusion equation with multiplicative noise) 

results 

  
5(�, �)
� = 	�∇�5(�, �) + 5(�, �)�(�, �),																							(8) 
                 

which attributes to the directed polymers problem [1]. 

The purpose of solving this equation is to find the 

scaling exponents. This means that any system following 

this model will have the same scaling exponents. The 

surface that grows by the EW and KPZ models are 

known to be self-affine. Self-affine surfaces are 

supposed to remain invariant under rescaling: 

 � → �� = 8�, ℎ → ℎ� = 89ℎ	, � → �� = 8:�, (9) 
 

 In contrast to the EW equation we cannot find the 

scaling exponents of the KPZ equation by rescaling it. 

By rescaling the EW equation the parameters �	, �, and � 

remain constant, but by rescaling the KPZ equation 

those parameters change. 

 The standard method of solving a nonlinear stochastic 

partial differential equation is the renormalization group 

approach [7]. In this method we consider the nonlinear 

term as the perturbative term and expand the equation in 

the Fourier space.  Finally we can obtain the flow 

equations for �	, � where by setting equal to zero the 

exponents can be found [1]. 

2 Numerical solution of the KPZ equation 
 

 In order to solve the KPZ equation we use numerical 

methods. We write the discrete form of the equation [4]. 

Since the KPZ equation is a stochastic equation, in order 

to avoid errors due to noise fluctuations in our 

calculations, to obtain the discrete form we apply the 

inverse Hopf-Cole transformation expressed as  
 5<(�) = exp= �2� ℎ<(�, �)>,																																												(10) 
                             

to the diffusion equation (with multiplicative noise). 
 5?< = �@� �5<A� − 25< + 5<B�� + �√�2� 5<�<,														(11) 

so we get the discrete form of the KPZ equation. 

 ℎ<(�)= �@� + �4@² F�ℎ<A� − ℎ<�� + �ℎ< − ℎ<B���G+ H��<.																																																																																(12) 
                                  

 We choose a surface of zero height to be grown in the 

KPZ model. It is supposed to have 100 sites. The time 

interval of a deposition is 0.01 (the time taken for the 

surface to grow each site from the beginning to the end). 

We repeat this action 1500 times (total time). The height 

of a particular site is calculated by: 

 ℎ<(� + 1)= ℎ<(�)+ Δ� J �@� Kℎ<A�(�) − 2ℎ<(�) + ℎ<B�(�)L
+ �4@� JKℎ<A�(�) − ℎ<(�)L� + Kℎ<(�) − ℎ<B�(�)L�M+ H��<(�)M.																																																																								(13) 
 

 The interface width is defined as: 

O(P, �) = Q1PR(ℎ(S, �) − ℎT(�))U
VW� ²,																														(14) 

 

where ℎT(�) is the mean height: 

 

ℎT(�) = 1PRℎ(S, �)U
VW� .																																																								(15) 

                                         

The relation between O and ! is: 

 O(P, �)	~	�X .																																																																							(16)             
 

We plot the logarithm of interface width as a function of 

logarithm of time, so ! is the slope of the fitting line 

before saturation (Fig. 1). In Fig. 1 we demonstrate the 

growing part of the process in green so we do not 

consider the saturation part to calculate the growth 

exponent. The red line is the fitting line of the growing 

part. The slope of this line is 0.29. The value of ! for the 
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KPZ equation is 0.33. The amount of error is 

 

Fig.1: growth exponent of the KPZ equation

The relation between interface width and roughness 

exponent is: 

 O%Y&(P)	~	P9 ,																																																						
 

where O%Y& is the saturation width. If the interface width 

is plotted as a function of system size (L) in saturation 

time, � is the slope of the fitting line. A better way of 

calculating the roughness exponent is to divide the 

surface to small parts known as windows. We calculate 

the interface width for each window and then average 

them .Then we increase the size of the windows and 

again we calculate the interface width for each window 

and average them. This process is repeated as many 

times as the interface fits 4 or 5 windows. At last we plot 

the interface of every step as the size of the windows in 

every step. 

 In Fig. 2 we did so and the graph is logarithm of 

interface width as the logarithm of system size (the blue 

graph) .Then we plotted the fitting line 

whose slope is the value of α. The fitting line in Fig.

in red and its slope is 0.45. The value of α

equation is 0.5. The amount of error is 0.05.

 Now we change the amount of λ and γ 

happens to the exponents. In figure 3 we demonstrate a 

cubic (three dimensional) plot of β with three axes 

(every one representing a parameter). In the figures the 
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The amount of error is 0.04. 

 

equation 

The relation between interface width and roughness 

																	�17	 

is the saturation width. If the interface width 

) in saturation 

is the slope of the fitting line. A better way of 

calculating the roughness exponent is to divide the 

windows. We calculate 

the interface width for each window and then average 

them .Then we increase the size of the windows and 

again we calculate the interface width for each window 

and average them. This process is repeated as many 

its 4 or 5 windows. At last we plot 

the interface of every step as the size of the windows in 

2 we did so and the graph is logarithm of 

interface width as the logarithm of system size (the blue 

graph) .Then we plotted the fitting line of the graph 

. The fitting line in Fig. 2 is 

α for the KPZ 

equation is 0.5. The amount of error is 0.05. 

 to see what 

igure 3 we demonstrate a 

with three axes 

(every one representing a parameter). In the figures the 

values of ν and λ change from 0 to 3.9 and the value of 

changes from 0.05 to 0.5.  It could be noticed that

amount of β decreases along the 

about 0.3. Clearly it shows the 

the RD to KPZ , but there is no change in 

axis, we come to conclusion that changing the noise 

strength does not affect the growth exponent.

Fig.2: roughness exponent of 

 

 We expect to observe a regime change along the 

from the RD to RDSR as the amount of 

0 to 3.9. But little change in !

and after running the program for many times we can see 

that the RD regime tends to evolve to 

 

Fig. 3: Cubic plot for the growth exponent of 

 

 To better understand the cubic plot we take the axes 

apart and analyze them one by one. Figure 4 is the plot 

change from 0 to 3.9 and the value of γ 

It could be noticed that the 

decreases along the λ axis from 0.5 up to 

about 0.3. Clearly it shows the change in regime from 

RD to KPZ , but there is no change in ! along the � 

we come to conclusion that changing the noise 

strength does not affect the growth exponent. 

 

roughness exponent of the KPZ equation 

We expect to observe a regime change along the � axis 

RD to RDSR as the amount of � changes from 

! along the � axis occurred, 

and after running the program for many times we can see 

that the RD regime tends to evolve to the RDSR regime. 

 

growth exponent of the KPZ equation 

To better understand the cubic plot we take the axes 

apart and analyze them one by one. Figure 4 is the plot 
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of β only as a function of, so the values of λ

0.2 are constant. It is clear that the value of β

0.5 to 0.35 and the system tends to evolve from 

to RDSR regime, although it did not reach the amount of 

0.25 which is the value of beta for the RDSR regime.

 

Fig.4: The variations of !with respect to 

 

 Again we refer to Fig. 3 to see the variations of 

respect to λ and  ν. Figure 5 is the plot of β 

of  λ, while the values of ν = 0 and γ = 0.3 are constant. 

Note that the value of β varies from 0.5 to about 0.3 and 

the system evolves from RD to KPZ regime.

 

Fig. 5: The variations of ]with respect to 
 

In Fig. 6 we considered ν = 0 and λ = 1

function of γ	. As we observed in Fig.

approximately no change in β by changing γ
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λ = 0 and γ = 

β varies from 

tends to evolve from the RD 

to RDSR regime, although it did not reach the amount of 

RDSR regime. 

 

with respect to � 

variations of β with 

 as a function 

3 are constant. 

varies from 0.5 to about 0.3 and 

the system evolves from RD to KPZ regime. 

 

with respect to ^ 

= 1.5, so β is a 

Fig. 3 there is 

γ. 

 

Fig. 6: The variations of 

 

 We do the same action for roughness exponent. Again 

the points λ = 0 and ν = 0 represent the RD regime with 

α = 0. By moving along the 

RDSR regime with α = 0.5 and by moving along the 

axis we go to KPZ regime with 

in Fig. 7. 

 
Fig. 7: Cubic plot of roughness exponent 

 

 Now we take the axes apart to observe the 

individually. In Fig. 8 we consider 

clear that the regime changes from RD 

(� =0.5) . 

 

 

of !with respect to � 

We do the same action for roughness exponent. Again 

= 0 represent the RD regime with 

= 0. By moving along the ν axis we gradually go to 

= 0.5 and by moving along the λ 

axis we go to KPZ regime with α = 0.5 . This is shown 

 

ubic plot of roughness exponent of KPZ equation 

Now we take the axes apart to observe the � behavior 

8 we consider � = 0 and �=2.5, it is 

clear that the regime changes from RD (= 0) to RDSR  
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Fig. 8: Change of � by changing � 

 

 In Fig. 9 we consider � = 0 and � = 0.45, we see that by 

increasing � from 0 to 3, � increases from 0 (RD 

regime) to 0.5 (KPZ regime). In a research on 

equation it was shown analytically that in weak coupling 

regime the crossover occurs [13]. The coupling constant 

is defined as: 

 

_ �
���

�`
.																						

 

Fig. 9: Change of � by changing � 

 

 In Fig. 6 we observed that changing � has no effect on, 

now we see the same for	�. In Fig. 10 we consider 

0.6 and � = 0.9, as we see there is almost no change in 
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we see that by 

ncreases from 0 (RD 

In a research on the KPZ 

weak coupling 

regime the crossover occurs [13]. The coupling constant 

																�18	 

 

has no effect on, 

10 we consider � = 

9, as we see there is almost no change in �.  

Fig. 10: Change of �

 

 The weak coupling regime is equivalent to small 

coupling constant (small � 

equation. We showed this crossover from KPZ equation 

to EW equation numerically. 

4 Conclusions 
 

 In this article we concentrated on scaling exponents of 

the KPZ equation, a fundamental equation in complex 

systems. We reviewed some properties of this equation 

and then focused on its solution. As we know the 

purpose of solving the equation is to find the scaling 

exponents. The scaling exponents of the equation are 

known (= 0.33 and � = 0.5). Our work was to change the 

values of the parameters of the equation to see if t

any difference in the value of each exponent, the answer 

was positive. Further going we showed that the change 

in the KPZ regime to the 

occurred. We concluded that changing noise strength

the least effect on the change of 

while changing � and � are effective in changing 

β, so that it leads to change of 
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