تعداد نشریات | 25 |
تعداد شمارهها | 935 |
تعداد مقالات | 7,687 |
تعداد مشاهده مقاله | 12,536,587 |
تعداد دریافت فایل اصل مقاله | 8,909,458 |
اثر غلظت های مختلف یون کلر بر فعالیت آنزیم های آنتی اکسیدانی در سه رقم توتون (Nicoiana tabacum)گرمخانهای | ||
زیست شناسی کاربردی | ||
مقاله 13، دوره 29، شماره 2، اسفند 1395، صفحه 211-226 اصل مقاله (539.17 K) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22051/jab.2017.2743 | ||
نویسندگان | ||
اکبر نورسته نیا* 1؛ سحر باباجانی2؛ جنت سرمد1؛ مهیار مشتاقی3 | ||
1استادیار. گروه زیست شناسی، دانشکده علوم پایه، دانشگاه گیلان | ||
2دانشجوی کارشناسی ارشد فیزیولوژی گیاهی، گروه زیست شناسی، دانشکده علوم پایه، دانشگاه گیلان | ||
3دانشجوی کارشناسی ارشد محقق مرکز تحقیقات توتون گیلان | ||
چکیده | ||
در این تحقیق اثرات چهار غلظت کلر آب آبیاری (10، 20، 40 و 80 میلی گرم در لیتر 2CaCl) به عنوان غلظت های تنش زا بر فعالیت آنزیم های پراکسیداز، آسکوربات پراکسیداز و پلی فنل اکسیداز، محتوای مالون دآلدهید و پروتئین کل در سه رقم توتون گرمخانه ای (کوکر، ویرجینیا و کنتاکی) مورد بررسی قرار گرفت. نتایج نشان داد افزایش غلظت کلر تا غلظت 80 میلی گرم بر لیتر موجب کاهش معنی دار فعالیت آنزیم پراکسیداز در رقم کوکر می شود. در کلیه ارقام مورد مطالعه بیشترین فعالیت آسکوربات پراکسیداز درغلظت 40 و کمترین فعالیت در غلظت 80 میلی گرم بر لیتر بوده و فعالیت آسکوربات پراکسیداز در کنتاکی و ویرجینیا درغلظت 40 افزایش ودر غلظت 80 میلی گرم بر لیتر در هر سه رقم کاهش یافت. مقدار مالون دآلدهید در رقم کوکر تنها درغلظت 20 افزایش یافته و در سایر غلظت ها اختلاف معنی داری مشاهده نشد. در رقم کنتاکی، مقادیر مالون دآلدهید در کلیه تیمار ها در مقایسه با شاهد به طور معنی داری کاهش یافت. در ویرجینیا در تیمار 20 مقدار مالون دآلدهید کاهش یافته و در سایر تیمار ها اختلاف معنی دار مشاهده نشد. مقادیر پروتئین کل در دو رقم کنتاکی و ویرجینیا با افزایش غلظت کلر، کاهش یافت. | ||
کلیدواژهها | ||
پراکسیداز؛ پلی فنل اکسیداز؛ توتون؛ کلر؛ مالون دآلدهید | ||
عنوان مقاله [English] | ||
Effects of different chlorine concentrations on antioxidant enzymes activity in three varieties of flue-cured tobacco | ||
نویسندگان [English] | ||
Akbar Norastehnia1؛ Sahar Babajani2؛ Jannat Sarmad1؛ Mahyar Moshtagi3 | ||
چکیده [English] | ||
Salt stress due to chlorine is one of the limiting factors in plant growth. An increasing of antioxidative enzymes activity is a defensive response of salt stresses. In this research, the effects of four chlorine concentrations in irrigation water (10, 20, 40, 80 mg/l CaCl2) on the activities of enzymes peroxidase, ascorbate peroxidase and polyphenol oxidase and malondialdehyde content, total leaf protein, and peroxidase zymogram in three greenhouse tobacco varieties were investigated. The results showed that an increase in chlorine concentration up to 80 mg/l, peroxidase enzyme activity decreased in Cooker. The highest and lowest ascorbate peroxidase activities of all stressed varieties were seen in 40 and80 mg/l treatments, respectively. polyphenol oxidase activity induced in Kentucky and Virginia by 40 mg/l treatment and reduced under 80 mg/l treatment in all three varieties. The measurement of malondialdehyde content in Cooker showed that there was no significant difference among all treatments, except in 20 mg/l concentration which was increased. Malondialdehyde content decreased significantly in Kentucky in all treatments compared to control. Malondialdehyde content of Virginia also showed no significant difference, except in 20 mg/l concentration which was reduced. Total protein content of Kentucky and Virginia was reduced with increasing of chlorine concentration. | ||
کلیدواژهها [English] | ||
Chlorine, Tobacco, Malondialdehyde (MDA), Peroxidase (POD), Polyphenol Oxidase (PPO) | ||
سایر فایل های مرتبط با مقاله
|
||
مراجع | ||
Abdul Jaleel, C., Gopi, R., Sankar, B., Manivannan, P., Kishorekumar, A., Sridharan, R. and Panneerselvam, R. (2007). Studies on germination, seedling vigour, lipid peroxidation and proline metabolism in Catharanthus roseus seedlings under salt stress. South African Journal of Botany. 73: 190-195. Ayala-Astroga, G.I. and Alcaraz-Melendez, L. (2010). Salinity effects on protein content, lipid peroxidation, pigments, and proline in Paulownia imperialis (Siebold & Zuccarini) and Paulownia fortune (Seemann & Hemsley) grown in vitro, Electronic Journal of Biotechnology. 13: 1-15. Azevedo, H., Amorim-Silva, V. and Tavares, R. (2009). Effect of salt on ROS homeostasis, lipid peroxidation and antioxidant mechanisms in Pinus pinaster suspension cells. Annals of Forest Science 66(2): 211-211. Azooz, M.M., Ismail, A.M. and Abou Elhamd, M.F. (2009). Growth, Lipid Peroxidation and Antioxidant Enzyme Activities as a Selection Criterion for the Salt Tolerance of Maize Cultivars Grown under Salinity Stress. International Journal of Agriculture and Biology. 11: 21-26. Bradford, M.M. (1976). Arapid and sensitive method for the quantificayion of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry. 72:248-254. Costa, P.H.A, Neto, A.D.A., Bezerra, M.A., Prisco, J.T. and Gomes-Filho, E. (2005). Antioxidant-enzymatic system of two sorghum genotypes differing in salt tolerance. Brazilian Journal of Plant Physiology. 17: 353-361. Davis, B.J. (1964). Disc electrophoresis. II. Method and application to human serum proteins. Annals of the New York Academy of Sciences. 121: 404-427. Dermal, T. and Turkan, I. (2005). Comparative lipid peroxidation antioxidant defense and proline content in roots of two rice cultivars differing in salt systems tolerance. Enviormental and Experimental Botany. 53:247-257. Esfandiari, E., Shekari, F. and Esfandiari, M. (2007). The effect of salt stress on antioxidant enzyme activity and lipid peroxidation on the wheat seedling. Notulae Botanicae Horti Agrobotanici Cluj-Napoca. 35: 133-138. Fielding, J.L. and Hall, J.L. (1978). A biochemical and cytological study of peroxidase activity in roots of Pisum sativum.. Journal of Experimental Botany. 29: 969-981. Gueta, Y., Yaniv, Z., Zilinskas, B.A. and Ben-Hayyim, G. (1997). Salt and oxidative stress: similar and specific responses and their relation to salt tolerance in Citrus. Planta. 203: 460-469. Gregory, R.P.F. and Bendali, D.S. (1966). The Purification and some Properties of the Polyphenol Oxidase from Tea (Camellia sinensis L.), Biochemical Journal. 101: 569-581. Heath, R.L. and Packer, L. (1968). Photoperoxidation in isolated chloroplasts. I. Kinetics and stochiometry of fatty acid peroxidation. Archives in Biochemistry and Biophysics. 125:189-198. Kalir, A., Ornri, G. and Poljakoff-Mayber, A. (1984). Peroxidase and catalase activity in leaves of Halimione Portulacoides exposed to salinity. Plant Physiology. 62: 238-244. Khajehpour, M. R. (1385). Industrial Plants, 1th ed., Jahad Daneshgahi. Tehran, pp: 139-142 Khosravinejad, F., Hedari, R. and Farboodnia, T. (2008). Antioxidant Responses of Two Barley Varieties of Saline Stress. Pakistan Journal of Biological Sciences. 11(6): 905-909. Layten-Davis, D., and Nielson, M.T. (1999). Tobacco: Production, chemistry and technology, 1th ed., Blackwell Science Ltd. Oxford, pp: 191. Meneguzzo, S., Navari-Izzo, F., and Izzo, R. (2000). NaCl effects on water relations and accumulation of mineral nutrients in shoots, roots and cell sap of wheat seedlings. Journal of Plant Physiology. 156: 711-716. Mesbah, M. (1381). Quality of Tobacco, 1th ed., Tobacco Research Center. Rasht, pp: 25-38. Mittova, V., Tal, M., Volokita, M. and Guy, M. (2002). Salt stress induces up-regulation of an efficient chloroplast antioxidant system in the salt-tolerant wild tomato species Lycopersicon pennellii but not in the cultivated species. Physiologia Plantarum. 115: 393-400. Nakano, Y. and Asada, K. (1981). Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplasts. Plant Cell Physiology. 22: 867-880. Tso, T.C. (1990). Production, Physiology and Biochemistry of Tobacco Plant. Ideals Incorporation, Maryland, pp: 487-557. | ||
آمار تعداد مشاهده مقاله: 877 تعداد دریافت فایل اصل مقاله: 742 |