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 The adsorption ability of Dowex Optipore L493 resin modified with Aliquat 336 

(MR), activated carbon modified with Aliquat 336 (MAC), and sawdust modified with 

Aliquat 336 (MS) for removal of Cr(VI) from aqueous solution in batch system is 

investigated. The effects of operational parameters such as adsorbent dosage, initial 

concentration of Cr(VI) ions, pH, temperature, and contact time are studied. An 

artificial neural network (ANN) model is developed to predict the efficiency of Cr(VI) 

ions removal. The results reveal that the Langmuir isotherm fits better than the 

Freundlich isotherm. The rate of adsorption shows the best fit with the pseudo-second 

order model. Thermodynamic parameters show that the adsorption of Cr(VI) 

adsorption is feasible, spontaneous, and exothermic. The comparison of the removal 

efficiencies of Cr(VI) using ANN model and experimental results show that the ANN 

model can estimate the behavior of the Cr(VI) removal process under different 

conditions. 

 

 

1 Introduction 
 

 There are various studies reported in the literature for 

the removal of heavy metals using large number of 

adsorbents (Shojaeimehr et al., 2014; Maheshwari et 

al., 2016; Siva Kiran et al., 2017; Asl et al., 2013; 

Yetilmezsoy et al., 2008; Turan et al., 2011; Mandal et 

al., 2015a; Oguz et al., 2014; Podstawczyk et al., 2015; 

Shanmugaprakash et al., 2013; Parveen et al., 2017; 

Mandal et al., 2015b; Oguz 2017; Gomez-Gonzalez et 

al., 2016; Oladipo et al., 2015; Prakash et al., 2008; 

Aber et al., 2009; Oguz et al., 2010; Singha et al., 

2015; Turan et al., 2011; Yavuz et al., 2011). The 

presence of heavy metal ions in water and wastewater 

is considered as a major problem regarding toxicity, 

non-biodegrad-ability, and severe damages in human  

 

health (Shojaeimehr et al., 2014). Chromium exists in 

the environment as trivalent and hexavalent forms. 

Although Cr(III) is an essential element for humans, 

water soluble Cr(VI) is highly irritating and toxic to 

humans and animals (Asl et al., 2013; 

Shanmugaprakash et al., 2013; Parveen et al., 2017; 

Mandal et al., 2015b; Aber et al., 2009; Gode and 

Pehlivan,  2003; Gode and Pehlivan, 2005a). WHO 

(World Health Organization) recommended a 

guideline value of 0.05 mgL−1 (desirable) for total 

chromium in drinking water with no relaxation on a 

permissible limit (Yavuz et al., 2011).  Anthropogenic 

sources of chromium are used for general industrial 

processes such as electroplating, leather tanning, wood 

preservations, manufacturing of dye, paint and paper 

(Asl et al., 2013; Aber et al., 2009; Yavuz et al., 2011).
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 Several methods have been developed in order to 

remove heavy metal ions containing precipitation, 

electrochemical treatment, adsorption, ion 

exchange processes, solvent extraction, membrane 

systems, filtration (Shojaeimehr et al., 2014; 

Yavuz et al., 2011). With respect to all methods, 

adsorption is a common and effective method for 

heavy metal ions removal because of low cost, 

high efficiency, and good operational conditions. 

Numerous adsorbents such as zeolite (Asl et al., 

2013), resin (Mandal et al., 2015b; Gode and 

Pehlivan, 2005a), lignite (Hassani et al., 2014; 

Gode and Pehlivan, 2005b), pumice (Turan et al., 

2011), agricultural or industrial waste materials 

(Oladipo et al., 2015; Prakash et al., 2008; Siva 

Kiran et al., 2017; Yetilmezsoy et al., 2008; 

Shanmugaprakash et al., 2013; Parveen et al., 

2017), and biomass (Oguz et al., 2014) have been 

studied for the capability of chromium and heavy 

metal removal from aqueous solutions. In the 

recent decade, many researches were conducted to 

access sorbents with higher efficiency and lower 

cost. The cost of adsorbent is an important 

parameter for comparison of adsorbents. In our 

study, solvent impregnated adsorbents named as 

MR, MAC and MS have been used. Dowex 

Optipore L493 resin is a highly cross-linked 

styrenic polymer that is insoluble in strong acid, 

strong base or organic solvents. It has a high 

surface area and a unique pore size distribution 

(Dincturk-Atalay, 2012). Activated carbon Calgon 

CPG has high mechanical strength and uniform 

transport pore distribution and a strongly 

adsorbing pore structure optimal for the 

adsorption. Sawdust is an industrial waste and low 

cost adsorbent (Dincturk-Atalay, 2012; Gode and 

Pehlivan, 2008). 
 

 The most important stage in an environmental 

process is modeling and optimization to improve a 

system and increase the efficiency of the process 

without increasing the cost (Shojaeimehr et al., 

2014). The mechanism of adsorption processes is 

complex. This is due to the complex interaction of 

variables and the non-linear behavior of these 

processes. As a result, determination of optimum 

experimental condition is very important to obtain 

maximum efficiency. The classical optimization 

method (single variable optimiza-tion) is not only 

time-consuming and tedious but also does not 

depict the complete effects of the parameters in 

the process and ignores the combined interactions 

between physicochemical parameters. This 

method can also lead to misinterpretation of 

results. To overcome this difficulty, some 

statistical methods have been used.  In recent 

years artificial neural networks (ANNs) have been 

widely studied to solve environmental problems 

because of their reliable and salient characteristics 

in capturing the non-linear relationships existing 

between variables(Shojaeimehr et al., 2014; 

Ghaedi et al., article in press; Siva Kiran et al., 

2017; Karimi et al., 2016; Elemen et al., 2012). It 

can be used to solve problems that are not eligible 

for conventional statistical methods. ANNs have 

been considered because of wide spread uses and 

their capability and ability to solve complicated 

problems. 
 

 Examples for application of AANs in water 

treatment include Cu2+ removal by sawdust 

(Prakash et al., 2008), flax meal (Podstawczyk et 

al., 2015), Cu(II) adsorption with industrial 

leachate by pumice (Turan et al., 2011), Cr(VI) 

removal by solid biodiesel waste residue 

(Shanmugaprakash et al., 2013), cerium oxide 

polyaniline composite (Mandal et al., 2015b), 

zeolite (Asl et al., 2013) and clay (Shojaeimehr et 

al., 2014). 
 

 The main objective of this study is to evaluate the 

MR, MAC and MS adsorption capacity in 

chromium removal through the application of 

ANNs. The adsorptive removal of chromium 

depends on several parameters such as initial 

chromium concentration, adsorbent dosage, 

contact time, temperature and initial pH of the 

solution. Also the adsorption kinetic, equilibrium 

models, and thermodynamic studies as well as 

MR, MAC, and MS behavior as a sorbent in 

chromium removal are explained. 
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2 Materials and methods 
 

2.1 Adsorption experiments and instruments  
 

 Cr(VI) stock solution (from Merck) was prepared 

from potassium salts of dichromate (K2Cr2O7) of 

analyticalgrade. Double distillated water was used 

in all experiments. MR, MAC and MS were used 

as sorbents. The sorption mixture consisted of 0.1 

g of sorbent inchromium solution from 1.0×10−4 

to 2.5×10−3 mol/L K2Cr2O7 for 2 h at 25±2 °C in 

the batch experiments. After reaching 

equilibration, the sorbent solution was passed 

through a filter and analysed for chromium 

content using an atomic adsorption spectrometer 

(Perkin-Elmer AA800 Model). The effects of 

different chromium concentrations (1.0×10−4- 

2.5×10−3 molL−1), sorbent dosage (100-800 mg), 

contact time, pH (2-8) and temperature             

(25–65±2 °C) using a thermostatic shaking water 

bath (MemmertWB29 Model) on chromium 

sorption were investigated. Solutions of 0.01M 

NaOH and HCl (from Aldrich) were used for pH 

adjustment. The pH was measured by using a 

glass electrode (Eutech Instruments Ion 510 

Cyberscan model).  

 

2.2 Artificial neural networks (ANN)  

 A feed-forward ANN model with three layers of 

nodes was constructed as in Fig. 1. The logistic 

function was used as the activation function in a 

neural network. The training and testing data sets 

must be normalized into a range 0.1-0.9. The input 

and the output data sets were normalized by using 

the following equation (Aktas and Yasar, 2004).  
 

XN = 0.1 + 
�.�	(	�		�
��)
(�
��		�
��	),                              (1) 

 

where XN is normalized value of a variable (the 

network input or the network output), X is an 

original value of the variable, and Xmax and Xmin 

are the maximum and the minimum original 

values of the variables, respectively. In order to 

produce sufficient data for training and testing of 

the model shown in Fig. 1, five different standard 

 
Figure 1. Artificial neural network architecture 

solutions were prepared using 2.0 to 8.0 pH range, 

25 to 65 oC temperature range, 100 to 800 mg 

adsorbent dosage range, 5 - 480 minute contact 

time range, and 1.0x10-4 - 2.5x10-3 M 

concentrations range, which were subject to neural 

network procedure. Randomly chosen 380 data 

pairs from these 545 data pairs were used for 

training the neural network, where the rest of the 

data were used for testing. The root mean square 

error values were calculated from the following 

equation to prove quantitatively the accuracy of 

the testing results of neural network models: 
 

RMS = �0.5	�	�∑ (��� −	��)����� ,         (2) 
 

where N is the number of testing data and ��� 	is 
target value. 
 

 

3 Results and discussion 
 

3.1 Effect of pH on Cr(VI) removal 
 

 Chromate ions exist in the aqueous solutions in 

different ionic forms (chromicacid (H2CrO4) and 

dichromate (Cr2O7
−2)), where the pH dictating of 

particular chromate species will predominate. In 

this process, the anion is not a simple monovalent 

anion but rather a series of chromate anions 

depending upon the pH and concentration of the 

solution. The total chromate species will be 

represented as Cr(VI) or chromate. The chromate 

may be represented in various forms such as 

H2CrO4, HCrO4
−, CrO4

2−, HCr2O7
−, and Cr2O7

−2in 

the solution phase as a function of pH and 
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concentration. In the neutral solution at low 

concentrations, Cr(VI) will be present in the form 

of HCrO4
− and CrO4

 2−. At acidic pH, HCrO4
− is the 

predominant Cr(VI) species in the aqueous phase. 

By reducing pH of the equilibrium solution, 

Cr(VI) uptake increases, only up to a certain pH, 

by forming more HCrO4
− at the expense of 

Cr2O7
−2. Once the pH value of about 3 is reached, 

the further reduction in pH will not increase the 

Cr(VI) uptake. 
 

 Hunt notes as a generalization, the binding of 

metal ions involvs two mechanisms, the first of 

these being simple ion exchange and the second 

through the formation of complexes, which may 

be chelates (Gode et al., 2008). Because of the 

complexity of most biomaterials, it is very likely 

that both of these binding processes will take 

place in a system at the same time. The 

interactions of chromium ions with MR, MAC, 

and MS surface molecules are complex, 

dominated by adsorption, ion exchange and 

chelation. The interaction of Cr(VI) with MR, 

MAC, and MS was investigated at different pH 

values. The pH value of the solution is an 

important factor that controls the sorption of 

Cr(VI). Adsorption of Cr(VI) was studied at 

different pH values to determine the optimum pH 

range, where the results are shown in Fig 2. The 

pH was adjusted with small additions of 0.1 M 

HCl or NaOH in the experiments. In order to find 

out the optimum pH for maximum removal 

efficiency, experiments were conducted by 

changing the pH of Cr(VI) solution from 2 to 8 at 

room temperature. From Fig. 2, decreasing the pH 

of the aqueous solution from 8 to 4, a distinct 

increase in the sorption is observed. The sorption 

of Cr(VI) ion on the sorbents is clearly very 

favorable at pH=2. As also seen in Fig. 2, the 

higher chromate removal capacity at the acidic pH 

is due to the removal of a greater number of 

Cr(VI) ions as per sorption site of the MR, MAC 

and MS. At higher pH values, greater than 6, the 

presence of OH−ions forms the 

hydroxidecomplexes of chromium (Gode and 

Pehlivan, 2005a). Hexavalent chromium existing 

as negative species in the solution may release 

hydroxide (OH−) instead of proton (H+) when 

they are adsorbed by MR, MAC, and MS. This 

results in an increase of pH (Gode et al., 2008).  

 

 
Figure 2. Effect of pH on the adsorption of Cr(VI) using MR, 

MAC, and MS. 

 

For that reason, the uptake decreases at high pH 

values. The Cr(VI) is very soluble in aqueous 

solutions, where their solubility increases with 

pH; therefore, it was practical to employ 

adsorbents at solution pH values of 6 and below 

(Gode and Pehlivan, 2005a). 

 

3.2 Effect of Initial Cr(VI) Concentration and    

Adsorption Isotherms 

 

 Factors influencing the adsorption rate are 

mainly, among others, the nature and 

concentration of competing ions, pH, sorbent 

amount, shaking speed, and temperature. 

Equilibrium isotherm, the relation between the 

amount exchange (qe), and the remaining 

concentration in the aqueous phase (Ce) are 

important to describe how solutes interact with the 

sorbents and so are critical in optimizing the use 

of the sorbents. The effect of sorbate 

concentration is shown in Fig. 3 as a function of 

the equilibrium concentration of metal ions in the 

aqueous medium at room temperature (25 °C) for 

2 h of contact time. In the case of low Cr(VI) 

concentrations, the ratio of the initial number of 

moles of chromium ions to the available surface 
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area is smaller and subsequently the fractional 

adsorption becomes independent of the initial 

concentrations.  

 

 
Figure 3. Sorption isotherms of Cr(VI) on MR, MAC, and MS as a 

function of the initial chromium concentration. 

 

However, at higher concentrations, the available 

sites of adsorption become fewer, and hence the 

percentage removal of chromium ions depends 

upon the initial concentration. The amount of 

Cr(VI) ions adsorbed per unit mass of the MR, 

MAC, and MS increases with the initial chromium 

concentration as expected. To obtain maximum 

sorption capacities or reach the plateau values that 

represent saturation of the active groups which are 

available for interaction with Cr(VI) ions on the 

MR, MAC, and MS, the initial concentration was 

increased from 1.0×10−4 to 2.5×10−3 mol/L Cr(VI) 

for MR, MAC, and MS. All adsorbents were 

saturated at relatively low concentrations 

indicating strong binding for Cr(VI). The sorption 

capacities were 0.27, 0.28 and 0.28 mmol of 

Cr(VI) per g of MR, MAC, and MS, respectively. 

Langmuir, Freundlich (Eq. 3, 4) and Dubinin- 

Radushkevich (Eq. 5) adsorption isotherm models 

were tested to the adsorption data. The isotherm 

study provides information on the capacity of the 

adsorbent and characterization of the adsorption 

process was described by using a number of 

different isotherm models developed by 

researchers. The Freundlich equation is 

represented as 
 
 

q = Kf × Ce
n,                               (3) 

 

 

where n is the Freundlich constant and Kf  is the 

adsorption coefficient, q is the weight adsorbed 

per unit weight of the adsorbent, and Ce is the 

equilibrium metal concentration in the fluid.  

 The Langmuir isotherm is valid for monolayer 

adsorption onto a surface containing a finite 

number of identical sites. The Langmuir isotherm 

is represented by the following equation: 
 

Ce/qe=Ce/Q0+1/Q0b,                                       (4)  
  

where Ce is the equilibrium concentration (mg/L), 

qe is the amount of adsorbed material at 

equilibrium (mg/g), b is the “affinity” parameter 

or Langmuir constant (L/mg), and Q0 is the 

“capacity” parameter (mg/g)(Gode and Pehlivan, 

2005a; Asl et al., 2013; Hassani et al., 2014; 

Karimi et al., 2016). The Langmuir constant b can 

serve as an indicator of isotherm rise in the region 

of lower residual chromium concentrations, which 

reflects the strength of the sorbent for the solute. 

The adsorption of Cr(VI) by sorbents is very high 

at low initial concentrations and reaches 

equilibrium very quickly. This indicates the 

possibility of the formation of monolayer 

coverage of the chromium ions at the outer 

interface of MR, MAC, and MS which suggests 

that these sorbents can remove most of the 

chromium ions from aqueous solution if their 

concentrations are low. Our experimental results 

obtained for the adsorption isotherms of MR, 

MAC, and MS were found to obey the Langmuir 

adsorption isotherms, as shown in Table 1. 

Dubinin–Radushkevich isotherm: The linear form 

of D–R isotherm is represented by 
 

ln qe = ln qm − kD–Rε
2 ,                                      (5) 

 

where qm  is the adsorption capacity (mg/g), kD–R 

is the constant related to adsorption energy 

(mol2kJ−2) and ε is the polanyi potential. The 

value of k is used to calculate the main free energy 

E (kJ mol−1) of the sorption by using E = -(2k)-0.5.  

 The calculated values of the D–R isotherm 

parameters for chromium ions are depicted in 

Table 1. 
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Table 1. Langmuir, Freundlich, and Dubinin –Radushkevich (D-R) 

adsorption parameters on MR, MAC, and MS adsorbents with 

Cr(VI). 

Langmuir Adsorption Isotherm Freundlich Adsorption Isotherm 

Sorbent Qo b R2 Kf n R2 

MR 0.27 1234.2 0.999 1.47 2.83 0.995 

MAC 0.28 600.8 0.992 1.47 2.50 0.887 

MS 0.28 600.8 0.996 0.60 2.59 0.887 

Dubinin–Radushkevich (D-R)  Adsorption Isotherm 

Sorbent qm k E R2 

MR 13.25 3.10-8 4.08 0.977 

MAC 12.84 1. 10-8 7.07 0.993 

MS 28.18 3.10-8 4.08 0.993 

In Table 1; Kf and Qo (mmol/g adsorbent) are the capacity of 

adsorbent, b and n are constants, qm (mmol/g) is the D-R 

adsorption capacity, k(mol2/kj-2) is a constant, E (kJ/mol) is the 

main free energy of adsorption, and R2 is the correlation 

coefficient. 

 

 The values of E obtained from the D–R isotherm 

models for chromium ions found below 8 revealed 

the adsorption dominant of the process. 

 

3.3 Effect of MR, MAC and MS dosages 

 

The effects of variation of sorbent dosage on the 

removal of chromium by MR, MAC, and MS are 

shown in Fig. 4. Adsorbent dosage was varied 

from 100 to 800 mg and equilibrated for 2 h at an 

initial chromium concentration of 1.0×10−3 M. It 

is seen that the equilibrium concentration in the 

solution phase decreases with increasing 

adsorbent doses (Gode and Pehlivan, 2003). 

 

 
Figure 4. Effect of amount of adsorbents on the removal of Cr(VI) 

using MR, MAC, and MS 

 

 

 

3.4 Effect of time on removal of 

Chromium(VI) 

 

The contact time is one of the effective parameters 

in adsorption capacity. In the present paper, Fig. 5 

illustrates the effect of shaking time on the 

removal by MR, MAC, and MS. High adsorption 

rates of chromium for all sorbents are observed at 

the onset, and then plateau values are gradually 

reached. It is obvious that Cr(VI) adsorption on 

MR, MAC, and MS was fast during the first 15 

min. The increasing contact time increased the 

Cr(VI) adsorption where it remains constant after 

that the equilibrium is reached in 30 min for initial 

concentration of 1.0× 10−3 mol/L. 

 

 
Figure 5. Effect of contact time on the adsorption of Cr(VI) using 

MR, MAC, and MS 

 

 The concentration of chromium in the solution 

decreased rapidly within 45–60 min and sorption 

was virtually completed within 80–120 min. As 

time passes, the adsorption capacity remained 

unchanged within the test duration. Then, 120 min 

was considered as the equilibrium time. It can be 

implied that during the initial stage, numerous 

vacant surface sites were available. By occupying 

the vacant surface sites by metal ions, the changes 

of adsorption capacity were decreased. The Cr(VI) 

adsorption with respect to time curves is single, 

smooth, and continuous leading to saturation 

showing monolayer coverage of chromium ions 

on the surface of the adsorbent (Gode and 

Pehlivan, 2003; Gode and Pehlivan, 2005; Asl et 

al., 2013; Hassani et al., 2014; Karimi et al., 

2016). The adsorption of chromium ions in 
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aqueous solutions followed pseudo second order 

kinetics. The kinetic equations were calculated 

according to the known equation (Gok et al., 

2007; Elwakeel 2010) where some constants were 

given in Table 2.   

 
Table 2. Rate constants for the removal of Cr(VI) with MR, MAC 

and MS 

Metal Sorbent qe-cal. k2 qe-exp. R2 

 

Cr(VI) 

MR 0.727 0.78 0.72 1 

MAC 0.724 0.34 0.71 0.99 

MS 0.327 4.26 0.32 1 

In Table 2, qe-cal. (mmol/L) is the calculated amount from the 

adsorption equation, k2(g/mg.minute) is the rate constant of the 

pseudo second order adsorption, qe-exp.(mmol/L) is the amount of 

chromium adsorbed at equilibrium, and R2 is the correlation 

coefficient. 

 

3.5 Temperature dependence of adsorption 

 The thermodynamic parameters are studied to 

evaluate the inherent energetic changes of the 

system. The effect of the temperature on Cr(VI) 

adsorption by MR, MAC, and MS was 

investigated in this study at 25, 35, 45, 55 and 65 

°C temperatures. The effect of temperature on the 

equilibrium constant (Kc) for the adsorption of 

chromium ions onto MR, MAC, and MS was 

investigated. Equilibrium constants for Cr(VI) 

were high and adsorption increased slightly with 

temperature for MR and MAC. This is due to the 

exothermic adsorption reactions of Cr(VI) ion 

with MR and MAC. The equilibrium constants for 

such reactions slightly increase with temperature. 

According to our results, adsorption decreased 

slightly with temperature for MS. Assuming that 

the activity coefficients are unity at low 

concentrations, (the Henry’s lawsense), 

thermodynamic parameters were calculated using 

the following relations (Asl et al., 2013; Hassani 

et al., 2014). 

 

Kc = CAe/ Ce,                                          (6) 

ΔG° = −RT lnKc,                   (7) 

logKc=ΔS°/2.303R−ΔH°/2.303RT,                (8)  

where Kc is the equilibrium constant, Ce is the 

equilibrium concentration in solution (mg/L), and 

CAe is is the solid-phase concentration at 

equilibrium (mg/L). ΔG°, ΔH°, and ΔS° are 

changes in the free energy, enthalpy, and entropy, 

respectively. ΔH° and ΔS° were obtained from the 

linear Van’t Hoff plot of logKc versus 1/T and 

presented in Table 3. Negative ΔG° values 

confirm the feasibility of the process and 

spontaneous nature of the adsorption with high 

preference of Cr(VI) for the MR, MAC, and MS. 

The negative values of ∆H° indicate the 

exothermic nature of the process while the 

negative ∆S° corresponds to a decrease in the 

degree of freedom of the adsorbed species (Gode 

and Pehlivan, 2003). Accordingly, the positive 

value of the enthalpy change confirms the 

endothermic nature of adsorption process for MS. 

This reveals the effect of temperature on the 

distribution coefficient, Kc, which increases with 

the increment of temperature. The value for ∆S° 

was found to be positive showing the tendency of 

MS to adsorb chromium ions and the randomness 

in the liquid/solid interface during the adsorption 

process. According to the values of ∆G° in Table 

3, the Cr(VI) adsorption process onto MR, MAC, 

and MS is a physical adsorption process.  

 
Table 3. Thermodynamic parameters for the adsorption of Cr(VI) 

on MR, MAC, and MS 

Sorbents   

                  ∆H         ∆S 

∆G 

T1 T2 T3 T4 T5 R2 

MR -22938.3 -72.2 -3623.2 -2434.4 -2229.7 -2144.6 -2090.1 0.986 

MAC -21961.8 -69.9 -2114.6 -1985.9 -1699.5 -1708.4 -1571.4 0.941 

MS 3934.7 8.8 -846.7 -515.9 -399.0 -346.6 -159.2 0.848 

In Table 3, ∆G° (kJmol-1) is the Gibbs free energy, ∆H° (kJmol-1) 

is the enthalpy, ∆S° (kJmol-1) is the entropy change, and R2 is the 

correlation coefficient. 

 

3.6 Artificial neural network 

 In order to provide the optimal model for removal 

efficiencies of MR, MAC, and MS adsorbents 

with Cr(VI) ions, the data were trained and tested 

for many times on 8 different models. These tests 

were performed with experimental data given for 
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training and testing. Prediction values for each of 

these resins were determined separately in training 

studies as the highest specificity coefficient and 

the lowest meansquare error. Matlab R2013a 

software carries out linear regression between 

regression button network inputs in training 

window and the outputs of these inputs. The 

results of MAC adsorbent are indicated in Fig. 6.  

 

Figure 6. Network regression for MAC 
 

 It was observed in the figures that the training, 

verification, and test results were really good. 

Experimental data not shown in the network can 

also be simulated with this network architecture 

which has a quite high performance. The RMS 

values obtained for training, validation, and 

testing from the recommended artificial neural 

networks are given in Tables 4, 5 and 6. 

Table 4. Comparison of the performances of the artificial neural 

networks models for MR 

 RMS errors  

Model Training Validation Testing 

NN 5-3-1 0.0085703 0.025476 0.0086158 

NN 5-4-1 0.00543810 0.00706583 0.0136799 

NN 5-5-1 0.00228955 0.0105867 0.00978704 

NN 5-6-1 0.0379731 0.019380 0.0529241 

NN 5-7-1 0.0835735 0.00660583 0.0198193 

NN 5-8-1 0.00236900 0.00837764 0.00150158 

NN 5-9-1 0.0034681 0.0014577 0.00659504 

NN 5-10-1 0.0691919 0.00144311 0.000538225 

 

Table 5. Comparison of the performances of the artificial neural 

networks models for MAC 

 RMS errors  

Model Training Validation Testing 

NN 5-3-1 0.00574923 0.00120710 0.0115904 

NN 5-4-1 0.0120461 0.00908784 0.0128129 

NN 5-5-1 0.00206124 0.00365255 0.0154927 

NN 5-6-1 0.00309978 0.0302336 0.19939 

NN 5-7-1 0.0109677 0.0131461 0.0224989 

NN 5-8-1 0.00486029 0.00279180 0.00883566 

NN 5-9-1 0.00455064 0.00374960 0.011477 

NN 5-10-1 0.00247010 0.00471528 0.00582213 

 

Table 6. Comparison of the performances of the artificial neural 

networks models for MS 

 RMS errors  

Model Training Validation Testing 

NN 5-3-1 0.0354174 0.00872118 0.0628209 

NN 5-4-1 0.140054 0.0192388 0.373284 

NN 5-5-1 0.0100908 0.0138513 0.0367470 

NN 5-6-1 0.00650812 0.0198710 0.0285774 

NN 5-7-1 0.0122588 0.0395477 0.0307165 

NN 5-8-1 0.0124422 0.0462221 0.0543918 

NN 5-9-1 0.00455177 0.00802429 0.0210923 

NN 5-10-1 0.00122031 0.000539560 0.0551898 

4 Conclusions 
 

 Adsorptive removal of chromium ions from 

aqueous solution using three different sorbents 

and the effects of different parameters (pH, initial 

chromium concentration, temperature, contact 

time and adsorbent dosage) on adsorption capacity 

in batch system have been reported. A neural 

network based model has been developed for the 

prediction of percentage removal of Cr(VI) ions 

from aqueous solution in a batch process using 

MR, MAC, and MS. The most important 

conclusions from the present study are 

summarized as follows: 

- The optimum conditions were found at an initial 

pH of 2, temperature of 25 °C, initial chromium 

concentration of 1.0x10-3 M, and sorbent dosage 

of 200 mg.  

- The results of ANN methodologies based on 

validation data showed that ANN is a useful and 

accurate method to predict adsorption process.  

- Langmuir isotherm showed the best agreement 

with the equilibrium data than Freundlich 

isotherm.  

- The thermodynamic studies proved that Cr(VI) 

removal using MR, MAC, and MS was a 
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spontaneous, feasible, exothermic and random 

process with mechanism of physical adsorption.  

- The adsorption of chromium ions in aqueous 

solutions followed pseudo second order kinetics.  

As a result; MR, MAC, and MS may be an 

alternative to expensive adsorbents where ANN 

methodology can be available. 
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