تعداد نشریات | 25 |
تعداد شمارهها | 935 |
تعداد مقالات | 7,692 |
تعداد مشاهده مقاله | 12,570,459 |
تعداد دریافت فایل اصل مقاله | 8,940,124 |
شبیه سازی و مطالعه ی اثر دمای چشمه در لایه نشانی نانو فیلم های طلا به روش تبخیر حرارتی با استفاده از نرم افزار COMSOL Multiphysics | ||
فیزیک کاربردی ایران | ||
مقاله 1، دوره 6، شماره 1، خرداد 1395، صفحه 5-26 اصل مقاله (1.52 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22051/jap.2018.7505.1013 | ||
نویسندگان | ||
محمد حسین احسانی* 1؛ مجمود جلالی مهر آباد2؛ عباس جوادیان3 | ||
1هیات علمی | ||
2کارشناس | ||
3هیات علمی دانشگاه سمنان | ||
چکیده | ||
در این مقاله، فرآیند لایه نشانی فیلم های نازک طلا، به کمک روش تبخیر حرارتی شبیه سازی شد. برای این منظور از نرم افزار COMSOL Multiphysics استفاده گردید. مدل سه بعدی در محیط نرم افزار ایجاد شده و هندسه، تحلیل مش ها، شرایط مرزی و روابط مورد نیاز معرفی و مورد مطالعه قرار گرفتند. ضخامت، چگالی، شار گرما، فشار و سایر پارامتر های مرتبط با لایه نشانی مورد بررسی قرار گرفتند. با استفاده از رگرسیون صفحه ای، معادله ی سطوح نانو فیلم های طلا محاسبه و اثر دمای چشمه بر رشد فیلم های نازک طلا بررسی گردید. نتایج نشان داد که بین ضخامت فیلم نازک و دمای چشمه رابطه ی مستقیم وجود دارد. با استفاده از برازش غیر خطی مدلی برای وابستگی ضخامت فیلم نازک به دمای چشمه ارائه گردید. با مقایسه نتایج بدست آمده از شبیه سازی ها در این کار برای ضخامت و انحنای سطح فیلم های نازک طلا با رفتار مورد انتظار از توزیع جرم روی زیرلایه، تطابق بین مقادیر شبیه سازی شده و این رفتار مشاهده گردید. | ||
کلیدواژهها | ||
تبخیر حرارتی؛ فیلم نازک؛ شبیه سازی | ||
عنوان مقاله [English] | ||
Simulation and Study of Source temperature effect in gold thin films growth prepared via evaporation method using COMSOL Multiphysics | ||
نویسندگان [English] | ||
Mohammadhossein Ehsani1؛ Mahmod Jalali Mehrabad2؛ Abbas Javadian3 | ||
1semnan | ||
3Semnan | ||
چکیده [English] | ||
In the present work, gold thin films growth process using the evaporation method has been simulated. For this purpose, the COMSOL Multiphysics 5.0 simulator software was used. Three-dimensional models were constructed and geometry, mesh analysis, boundary conditions and related relations were defined and studied. Film thickness, density, heat flux and other related parameter to deposition were investigated. Using planar regression, surface equation of the gold thin films was calculated and the effect of the temperature of gold source on thickness of films was investigated. Results showed that there is a correlation between the temperature of source and the thickness of gold films. Using non-linear regression, a model was represented in order to describe the dependency of film thickness on source temperature. Comparing the simulation results in this paper for thickness and curvature of gold thin films with expected behavior distribution on substrate, a promising accommodation between the simulated data and this trend was observed. | ||
کلیدواژهها [English] | ||
Evaporation, Thin film, Simulation | ||
مراجع | ||
[1] M. Ohering, Materials Science of Thin Films, Deposition and Structure”, (2002), 2nd Edition, New York, Academic Press. [2] K.E. Harris, V.V. Singh, A.H, King, “Grain rotation in thin films of gold”. Acta Mater, 46 (1998) 2623-2633. [3] H.D. Espinosa, B.C. Prorok, “Size effects on the mechanical behavior of gold thin films”. Journal of Materials Science, 38. (2003) 4125 – 4128. [4] L. Hultman, A. Robertsson, H. T. G. Hentzell, I. Engström and P. A. Psaras. “Crystallization of amorphous silicon during thin-film gold reaction”. Journal of Applied Physics,62 (1987) 3647. [5] L. John “Janning Thin film surface orientation for liquid crystals”. Applied Physics Letters, 21(1972) 173. [6] D. Krause, C.W. Teplin, C.T. Rogers, “Optical surface second harmonic measurements of isotropic thin-film metals: Gold, silver, copper, aluminum, and tantalum”. Journal of Applied Physics, 96 (2004) 3626. [7] C.H. Claassens, J.J. Terblans, M.J.H. Hoffman, H.C. Swart, “Kinetic Monte Carlo simulation of monolayer gold film growth on a graphite substrate” Surf. Interface Anal, 37(2005) 1021–1026. [8] C.L. Kuo, P. Clancy, “MEAM molecular dynamics study of a gold thin film on a silicon substrate”. Surface Science, 551(2004) 39–58. [9] W.D. Luedtke, U. Landman,. “Metal-on-metal thin-film growth: Au/Ni(001) and Ni/Au(001)” Physical Review B, 44.(1991) 5970. [10] H. Zheng. "Molecular Dynamic Simulation of Thin Film Growth Stress Evolution”. Theses and Dissertations, (2011) Paper 1256. [11] A. Axelevitch, B. Apter, G. Golan, “Simulation and experimental investigation of optical transparency in gold island films”. Optics Express 21 (2013)4126. [12] A. Musset, S. Dvorak, “Basic in Action” (1984). Chap 12, Butterworth. [13] S. Bosch,. “Computer-aided procedure for optimization of layer thickn- ess uniformity in thermal evaporation physical vapor deposition chambers for lens coating”. J. Vac. Sci. Technol. A,10 (1992) 98. [14] H.A. Macleod, “Thin-Film Optical Filters”. (1986), Macmillan Publish- ing Company, New York.
[15] I. Fuke, V. Prabhu, S. Baek, “Computational Model for Predicting Coating Thickness in Electron Beam Physical Vapor Deposition”. J. Manufacturing Processes, 7 (2005) 140. [16] J.B. Oliver, D. Talbot, “Optimization of Deposition Uniformity for Large-aperture National Ignition Facility Substrates in a Planetary Rotation System”. Appl. Opt. 45, (2006) 3097. [17] E. N. Kotlikov, V.N. Prokashev, V.A. Ivanov, A.N. Tropin, “Thickness Uniformity of Films Deposited on Rotating Substrates”. J. Opt. Technol. 76 (2009) 100. [18] F. Wang, R. Crocker, R. Faber, “Large-area Uniformity in Evaporation Coating through a New Form of Substrate Motion”. Optical Interference Coatings (2010). [19] D.J. Woodland, E. Mack Jr. “The Effect of Curvature of Surface on Surface Energy. Rate of Evaporation of Liquid Droplets. Thickness of Saturated Vapor Films”. J. Am. Chem. Soc., 55 (8), (1993)3149. [20] R. Schmidt, M. Parlak, A.W. Brinkman, “Control of the thickness distr- ibution of evaporated functional electroceramic NTC thermistor thin films”. Journal of Materials Processing Technology, 199, (2008)412. [21] O. Piot, A. Malaurie, J. Machet, “Experimental and theoretical studies of coating thickness distributions obtained from high rate electron beam evaporation sources”. Thin Solid Films, 293(1997) 124. [22] L.D. Hall “The Vapor Pressure of Gold and the Activities of Gold in Gold-Copper Solid Solutions”. J .Am. Chem .Soc, 73, (2)(1951) 757. [23] F.H. Siyanaki, H.R. Dizaji, M.H. Ehsani, S. Khorramabadi, “The effect of substrate rotation rate on physical properties of cadmium telluride films prepared by a glancing angle deposition method" Thin Solid Films 577(2015) 128–133. [24]M. Panjan, “Influence of substrate rotation and target arrangement on the periodicity and uniformity of layered coatings”, Surface & Coatings Technology 235 (2013) 32–44. [25] A. Rauch, R.J. Mendelsberg, J.M. Sanders, A. Anders, J. Appl. Phys. 111 (2012) 083302. [26] A. Anders, Handbook of Plasma Immersion Ion Implantation and Deposition, Wiley, 2000 [27] L. Holland; W. Steckelmacher; “the distribution of thin films condensed on surfaces by the vacuum evaporation method”; Vacuum 2, (4) (1952) 346. [28] C. C. Jaing; M. H. Cheng; J. S. Chen; C. H. Tsai; P. S. Yeh; J. S. Kao; H. Y. Hsiao; “Studying layer uniformity of sputter coatings by intensity distribution of plasma spectrum”; Applied Surface Science 169-170, (2001) 649-653. [29] J. Wang; J. Shao; K. Yi; Z. Fan; “Layer uniformity of glancing angle deposition”; Vacuum 78, (2005) 107–111. [30] M. Panjan; “Influence of substrate rotation and target arrangement on the periodicity and uniformity of layered coatings”; Surface & Coatings Technology 235, (2013) 32–44. [31] S. Todorova; D. Popov; E. Dimitrov; D. Dochev; M. Kanev; “Thickness uniformity of vacuum deposited layers”; Vacuum 38, (1988) 869-872. [32] Hagen N. Dereniak E.L. "Gaussian profile estimation in two dimensions," Appl. Opt. 47 (2008) 6842-6851. [33] G.M. Sant'Anna, D.S. Roveri, H.H. Bertan, J.F. Mologni, E.S Braga, M.A.R Alves, J. of. Electrostatic. 74 (2015) 96-101. | ||
آمار تعداد مشاهده مقاله: 964 تعداد دریافت فایل اصل مقاله: 637 |