تعداد نشریات | 25 |
تعداد شمارهها | 924 |
تعداد مقالات | 7,620 |
تعداد مشاهده مقاله | 12,415,503 |
تعداد دریافت فایل اصل مقاله | 8,837,312 |
اثر سالیسـیلیک اسـید بر برخی از شـاخصهای رشـد و آنزیمهای آنتی اکسیدان چرخه ی گلوتاتیون آسـکوربات تحت کشـت در شیشـه گیاه گوجه فرنگی | ||
زیست شناسی کاربردی | ||
مقاله 1، دوره 31، شماره 1 - شماره پیاپی 55، خرداد 1397، صفحه 5-27 | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22051/jab.2018.3673 | ||
نویسندگان | ||
علی اکبر احسانپور1؛ محمد صادق ملکی2 | ||
1استاد گروه زیست شناسی دانشگاه اصفهان | ||
2کارشناسی ارشد، گروه زیست شناسی دانشگاه اصفهان | ||
چکیده | ||
سالیسیلیک اسید بهعنوان یک هورمون گیاهی، موجب تولید گونههای فعال اکسیژن مانند H2O2 بهعنوان یک مولکول پیامرسان میشود. این هورمون در غلظتهای زیاد با تجمع گونههای فعال اکسیژن موجب تنشهای اکسیداتیو میگردد. گیاهان برای مقابله با این تنش اکسیداتیو از مکانیسمهایی مانند آنتیاکسیدانهای آنزیمی و غیر آنزیمی استفاده میکنند. تاکنون اثر سالیسیلیک اسید بر چرخه گلوتاتیون آسکوربات در گیاه گوجهفرنگی بهعنوان یک گیاه مدل بهخوبی مشخص نشده است. در این مطالعه گیاه گوجهفرنگی Lycopericon esculentum Mill)) به مدت 4 هفته در محیط کشت حاوی سالیسیلیک اسید در غلظتهای 0001/0، 001/0، 01/0، 1/0 و 5/0 میلی مولار سالیسیلیک اسید کشت داده شد و اثر سالیسیلیک اسید بر شاخصهای رشدی، میزان H2O2، MDA و فعالیت آنزیمهای CAT، APX، GR، DHAR، SOD و ترکیبات آسکوربات، دی هیدرو آسکوربات، پرولین و قند محلول بررسی شد. با توجه به نتایج، بیشترین میزان RWC، طول ساقه و طول ریشه در غلظت 01/0 میلی مولار سالیسیلیک اسید مشاهده شد. میزان فعالیت دو آنزیم APX و CAT در غلظتهای پائین کاهش یافت و در ادامه، با افزایش غلظت تیمار سالیسیلیک اسید، افزایش معنیداری را نسبت به نمونه شاهد نشان داد. میزان MDA، H2O2، پرولین، قند محلول و آنزیمهای چرخه گلوتاتیون- آسکوربات، با افزایش میزان سالیسیلیک اسید افزایش معنیداری را از خود نشان دادند. این نتایج نشان میدهد که گیاه برای مقابله با تنش اکسیداتیو ناشی از افزایش گونههای فعال اکسیژن، ترکیباتی مانند پرولین، قند محلول و آنتیاکسیدانهای آنزیمی و غیر آنزیمی را تغییر و افزایش میدهد. در این مطالعه، غلظت 01/0 میلی مولار سالیسیلیک اسید با بیشترین میزان شاخصهای رشدی و کمترین میزان تنش بهعنوان غلظت بهینه در این گیاه معرفی میشود. | ||
کلیدواژهها | ||
چرخـه گلوتاتیون-آسـکوربات؛ سالیسـیلیک اسـید؛ گوجهفرنگـی؛ گونـه فعـال اکسـیژن | ||
عنوان مقاله [English] | ||
The impact of salicylic acid on some growt parameters and antioxidant enzymes of glutathione-ascorbate cycle in tomato plant under in vitro culture | ||
نویسندگان [English] | ||
Aliakbar Ehsanpour1؛ Mohamad Sadegh Maleki2 | ||
1Professor of Biology, Isfahan University | ||
2M.Sc. Department of Biology, Isfahan University | ||
چکیده [English] | ||
Salicylic acid is a plant hormone which accumulates ROS production like H2O2 as a signal molecule and in toxic concentration cause oxidative stress with hyper accumulation of ROS. Plants use enzymatic antioxidant like glutathione-ascorbate cycle enzymes and non-enzymatic antioxidant such as ASA and DHASA against oxidative stress. The effect of salicylic acid on ascorbate –glutathione cycle antioxidants in tomato plants as amodel plant is not clear Tomato (Lycopericon esculentum Mill) plants cultured in vitro for 4 weeks on MS medium containing salicylic acid (SA) treatment in concentrations of 0.0001, 0.001, 0.01, 0.1 and 0.5 mM SA.... In this study, the effect of salicylic acid investigated on growth parameters, H2O2 and MDA content and activity of SOD, CAT, APX, GR, DHAR enzymes and also ASA, DHASA, proline and total soluble sugar. The results showed that maximum amount of RWC, root and shoot length reached in 0.01 mM SA. H2O2 and MDA content increased under SA treatment. APX and CAT activity initially decrease in low concentrations of SA and then increased in toxic level (0.1 and 0.5 mM SA). Activity of GR, DHAR, SOD, ASA, DHASA, proline and total soluble sugar gradually increased compared with control plants. These results indicate that plants for defense against oxidative stress cause by ROS production change and induce proline, total soluble sugar and ascorbate-glutathione cycle enzymes and compounds. In this study, the concentration of 0.01 mM SA with the highest growth indices and the least amount of stress as the optimal concentration in the plant is introduced. | ||
کلیدواژهها [English] | ||
ROS, Salicylic acid, Tomato, Glutathione-Ascorbate cycle | ||
مراجع | ||
Aebi, H. (1984). Catalase in vitro. Methods in Enzymology. 105:121-126. Agarwal, S. Sairam, R.K. Srivastava, G.C. and Meena, R.C. (2005). Changes in antioxidant enzymes activity and oxidative stress by abscisic acid and salicylic acid in wheat genotypes. Biologia Plantarum 49:541-550. Alscher, R.G. Erturk, N. and Heath, L.S. (2002). Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. Journal of Experimental Botany 53:1331-1341. Apel, K. and Hirt, H. (2004). Reactive oxygen species: Metabolism, Oxidative Stress and Signal Transduction. Annual Review of Plant Biology 55:373–99. Ashraf, M. and Foolad, M. (2007). Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and Experimental Botany 59:206-216. Baccouch, S. Chaoui, A. and El Ferjani, E. (2001). Nickel toxicity induces oxidative damage in Zea mays roots. Journal of plant nutrition 24:1085-1097. Baena-González, E. Rolland, F. Thevelein, J.M. et al. (2007). A central integrator of transcription networks in plant stress and energy signalling. Nature 448:938-942. Barrs, H. and Weatherley, P. (1962). A re-examination of the relative turgidity technique for estimating water deficits in leaves. Australian Journal of Biological Sciences 15:413-428. Bates, L. Waldren, R. and Teare, I. (1973). Rapid determination of free proline for water-stress studies. Plant and Soil 39:205-207. Ben‐Amor, M. Flores, B. Latché, A. et al. (1999). Inhibition of ethylene biosynthesis by antisense ACC oxidase RNA prevents chilling injury in Charentais cantaloupe melons. Plant Cell & Environment 22:157-168. Bengu, T. Oguzhan, M. and Ethem, A. (2015). Effects of exogenous salicylic acid on antioxidant activity and proline accumulation in apple (Malus domestica L.). Horticulture, Environment and Biotechnology 56:606–611. Chen, J.Y. Wen, P.F. Kong, W.F. et al. (2006). Effect of salicylic acid on phenylpropanoids and phenylalanine ammonia-lyase in harvested grape berries. Postharvest Biology and Technology 40:64-72. Dat, J.F. Lopez-Delgado, H. Foyer, C.H. et al. (1998). Parallel changes in H2O2 and catalase during thermotolerance induced by salicylic acid or heat acclimation in mustard seedlings. Plant Physiology 116:1351-1357. Dat, J.F. Lopez-Delgado, H. Foyer, C.H. et al. (2000). Effects of salicylic acid on oxidative stress and thermotolerance in tobacco. Journal of Plant Physiology 156:659-665. Desikan, R. Cheung, M.K. Clarke, A. et al. (2004). Hydrogen peroxide is a common signal for darkness-and ABA-induced stomatal closure in Pisum sativum. Functional Plant Biology 31:913-920. Devlin, M.R. and Withman, F.H. (2002). Plant Physiology. CBS Publishers & distributors Chapter 12 Dubois, M. Gilles, K.A. Hamilton, J.K. et al. (1956). Colorimetric method for determination of sugars and related substances. Analytical chemistry 28:350-356. Durner, J. Klessig, D.F. (1996). Salicylic acid is a modulator of tobacco and mammalian catalases. Journal of Biological Chemistry 271:28492-28501. Fecht-Christoffers, M.M. Braun, H.P. Lemaitre-Guillier, C. et al. (2003). Effect of manganese toxicity on the proteome of the leaf apoplast in cowpea. Plant Physiology 133:1935-1946. Fernández-Marcos, M. Sanz, L. Lewis, D.R. et al. (2011). Nitric oxide causes root apical meristem defects and growth inhibition while reducing PIN-FORMED 1 (PIN1)-dependent acropetal auxin transport. Proceedings of The National Academy of Sciences 108:18506-18511. Fischer, B.B. Hideg, E. and Krieger-Liszkay, A. (2013). Production, detection, and signaling of singlet oxygen in photosynthetic organisms. Antioxidants & Redox Signaling 18:2145-2162. Foyer, C.H. and Halliwell, B. (1976). The presence of glutathione and glutathione reductase in chloroplasts: a proposed role in ascorbic acid metabolism. Planta 133:21-25. Foyer, C.H. and Noctor, G. (2009). Redox regulation in photosynthetic organisms: signaling, acclimation, and practical implications. Antioxidants & Redox Signaling 11:861-905. Gajewska, E. and Skłodowska, M. (2007). Effect of nickel on ROS content and antioxidative enzyme activities in wheat leaves. Biometals 20:27-36. Giannopolitis, C.N. and Ries, S.K. (1977). Superoxide dismutases I. Occurrence in higher plants. Plant Physiology 59:309-314. Gunes, A. Inal, A. Alpaslan, M. et al. (2007). Salicylic acid induced changes on some physiological parameters symptomatic for oxidative stress and mineral nutrition in maize (Zea mays L.) grown under salinity. Journal of Plant Physiology 164:728-736. Hayat, Q. Hayat, S. Irfan, M. et al. (2010). Effect of exogenous salicylic acid under changing environment: a review. Environmental and Experimental Botany 68:14-25. Heath, R.L. and Packer, L. (1968). Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics 125:189-198. Huang, R.H. Liu, J.H. Lu, Y.M. et al. (2008). Effect of salicylic acid on the antioxidant system in the pulp of ‘Cara cara’navel orange (Citrus sinensis L.) at different storage temperatures. Postharvest Biology and Technology 47:168-175. Hummel, M. Rahmani, F. Smeekens, S. et al. (2009). Sucrose-mediated translational control. Annals of Botany 24:125-135 Jing, C. Cheng, Z. LI, L.p. et al. (2007). Effects of exogenous salicylic acid on growth and H 2 O 2-metabolizing enzymes in rice seedlings under lead stress. Journal of Environmental Sciences 19:44-49. Kadioglu, A. Saruhan, N. Sağlam, A. et al. (2011). Exogenous salicylic acid alleviates effects of long term drought stress and delays leaf rolling by inducing antioxidant system. Plant Growth Regulation 64:27-37. Kampfenkel, K. Vanmontagu, M. and Inze, D. (1995). Extraction and determination of ascorbate and dehydroascorbate from plant tissue. Analytical Biochemistry 225:165-167. Kehrer, J.P. (2000). The Haber–Weiss reaction and mechanisms of toxicity. Toxicology 149:43-50. Khokon, M. Okuma, E. Hossain, M.A. et al. (2011). Involvement of extracellular oxidative burst in salicylic acid‐induced stomatal closure in Arabidopsis. Plant cell & environment 34:434-443. Krantev, A. Yordanova, R. Janda, T. et al. (2008). Treatment with salicylic acid decreases the effect of cadmium on photosynthesis in maize plants. Journal of Plant Physiology 165:920-931. Li, G. Peng, X. Wei, L. and Kang, G. (2013). Salicylic acid increases the contents of glutathione and ascorbate and temporally regulates the related gene expression in salt-stressed wheat seedlings. Gene 321:525-529. Liu, C. Liu, Y. Guo, K. et al. (2011). Effect of drought on pigments, osmotic adjustment and antioxidant enzymes in six woody plant species in karst habitats of southwestern China. Environmental and Experimental Botany 71:174-183. Logan, B.A. Kornyeyev, D. Hardison, J. et al. (2006). The role of antioxidant enzymes in photoprotection. Photosynthesis Research 88:119-132. Luo, Z. Chen, C. and Xie, J. (2011). Effect of salicylic acid treatment on alleviating postharvest chilling injury of Qingnai plum fruit. Postharvest Biology and Technology 62:115-120. Miller, G. Shulaev, V. and Mittler, R. (2008). Reactive oxygen signaling and abiotic stress. Physiologia Plantarum 133:481-489. Mur, L.A. Bi, Y.M. Darby, R.M. et al. (1997). Compromising early salicylic acid accumulation delays the hypersensitive response and increases viral dispersal during lesion establishment in TMV‐infected tobacco. The Plant Journal 12:1113-1126. Nakano, Y. and Asada, K. (1981). Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant and Cell Physiology 22:867-880. Nivedithadevi, D. Somasundaram, R. and Pannerselvam, R. (2012). Effect of abscisic acid, Paclobutrazol and Salicylic acid on the growth and Pigment variation in Solanum Trilobatum. International Journal of Drug Development and Research Papas, A. (1999). Diet and antioxidant status. Food and Chemical Toxicology 37:999-1007. Parida, A.K. Das, A.B. and Mohanty, P. (2004). Defense potentials to NaCl in a mangrove, Bruguiera parviflora: differential changes of isoforms of some antioxidative enzymes. Journal of Plant Physiology 161:531-542. Parvaiz, A. Cheruth, A.J. Mohamed, A.S. Gowher, N. and Satyawati, S. (2010). Roles of enzymatic and nonenzymatic antioxidants in plants during abiotic stress. Critical Reviews in Biotechnology 30:161–175. Pence, V.C. Dunford, S.S. and Redella, S. (2005). Differential effects of abscisic acid on desiccation tolerance and carbohydrates in three species of liverworts. Journal of Plant Physiology 162:1331-1337. Pérez-Ruiz, J.M. Spínola, M.C. Kirchsteiger, K. et al. (2006). Rice NTRC is a high-efficiency redox system for chloroplast protection against oxidative damage. The Plant Cell 18:2356-2368. Pinto, E. Sigaud‐kutner, T. Leitao, M.A. et al. (2003). Heavy metal–induced oxidative stress in algae1. Journal of Phycology 39:1008-1018. Radwan, D.E.M. (2012). Salicylic acid induced alleviation of oxidative stress caused by clethodim in maize (Zea mays L.) leaves. Pesticide Biochemistry and Physiology 102:182-188. Raskin, I. (1992). Role of salicylic acid in plants. Annual Review of Plant Biology 43:439-463. Reddy, A.R. Chaitanya, K. Jutur, P. et al. (2004). Differential antioxidative responses to water stress among five mulberry (Morus alba L.) cultivars. Environmental and Experimental Botany 52:33-42. Sahu, G.K. and Sabat, S.C. (2011). Changes in growth, pigment content and antioxidants in the root and leaf tissues of wheat plants under the influence of exogenous salicylic acid. Brazilian Journal of Plant Physiology 23:209-218. Sairam, R. and Srivastava, G. (2002). Changes in antioxidant activity in sub-cellular fractions of tolerant and susceptible wheat genotypes in response to long term salt stress. Plant Science 162:897-904. Sairam, R. K. Deshmukh, P.S. and Saxena, D. (1998). Role of antioxidant systemes in wheat genotype tolerance to water stress. Biologia plantarum 41: 387-394. Sala, J.M. (1998). Involvement of oxidative stress in chilling injury in cold-stored mandarin fruits. Postharvest Biology and Technology 13:255-261. Sala, J.M. and Lafuente, M.T. (1999). Catalase in the heat-induced chilling tolerance of cold-stored hybrid Fortune mandarin fruits. Journal of Agricultural and Food Chemistry 47:2410-2414. Senaratna, T. McKersie, B.D. and Stinson, R.H. (1985). Antioxidant levels in germinating soybean seed axes in relation to free radical and dehydration tolerance. Plant Physiology 78:168-171. Shakirova, F.M. Sakhabutdinova, A.R. Bezrukova, M.V. et al. (2003). Changes in the hormonal status of wheat seedlings induced by salicylic acid and salinity. Plant Science 164:317-322. Shi, Q. Bao, Z. Zhu, Z. et al. (2006) Effects of different treatments of salicylic acid on heat tolerance, chlorophyll fluorescence, and antioxidant enzyme activity in seedlings of Cucumis sativa L. Plant growth regulation 48:127-135. Shi, Q. and Zhu, Z. (2008) Effects of exogenous salicylic acid on manganese toxicity, element contents and antioxidative system in cucumber. Environmental and Experimental Botany 63:317-326. Shim, J.S. Kim, J.H., Cho, H.Y. et al. (2003). Irreversible inhibition of CD13/aminopeptidase N by the antiangiogenic agent curcumin. Chemistry & Biology 10:695-704. Smirnoff, N. (1995(. Antioxidant systems and plant response to the environment. Environment and plant metabolism: Flexibility and acclimation 42. Stief, T.W. (2003). The physiology and pharmacology of singlet oxygen. Medical Hypotheses 60:567-572. Surplus, S. Jordan, B. Murphy, A. et al. (1998). Ultraviolet‐B‐induced responses in Arabidopsis thaliana: role of salicylic acid and reactive oxygen species in the regulation of transcripts encoding photosynthetic and acidic pathogenesis‐related proteins. Plant Cell & Environment 21:685-672. Szabados, L. and Savoure, A. (2010). Proline: a multifunctional amino acid. Trends in Plant Science 15:89-97. Takahashi, M.A. and Asada, K. (1983). Superoxide anion permeability of phospholipid membranes and chloroplast thylakoids. Archives of Biochemistry and Biophysics 226:558-566. Tingting, L. Yuanyuan, H. Xuhua, D. Hui, T. Chaohua, S. and Jiasheng, W. (2014). Salicylic acid alleviates the adverse effects of salt stress in Merrillii Seedlings by Activating photosynthesis and enhancing antioxidant systems. Plos One 9:10-19. Velikova, V. Yordanov, I. and Edreva, A. (2000). Oxidative stress and some antioxidant systems in acid rain-treated bean plants: protective role of exogenous polyamines. Plant Science 151:59-66. Vranova, E. Inzé, D. and Van Breusegem, F, (2002). Signal transduction during oxidative stress. Journal of Experimental Botany 53:1227-1236. Wang, H. Feng, T. and Peng, X. (2009). Up-regulation of chloroplastic antioxidant capacity is involved in alleviation of nickel toxicity of Zea mays L. by exogenous salicylic acid. Ecotoxicology and Environmental Safety 72:1354-1362. Wang, Z. Ma, L. and Zhang, X. (2015). The effect of exogenous salicylic acid on antioxidant activity, bioactive compounds and antioxidant system in apricot fruit. Scientia Horticulturae 181:113-120. Watanabe, S. Kojima, K. and Ide, Y. (2000). Effects of saline and osmotic stress on proline and sugar accumulation in Populus euphratica in vitro. Plant Cell, Tissue and Organ Culture 63:199-206. Welinder, K.G. (1992). Superfamily of plant, fungal and bacterial peroxidases. Current Opinion in Structural Biology 2:388-393. Zhang, S. and Klessig, D.F. (1997). Salicylic acid activates a 48-kD MAP kinase in tobacco. The Plant Cell 9:809-824. Zhao, J. Davis, L.C. and Verpoorte, R. (2005). Elicitor signal transduction leading to production of plant secondary metabolites. Biotechnology advances 23:283-333.
| ||
آمار تعداد مشاهده مقاله: 681 تعداد دریافت فایل اصل مقاله: 468 |