تعداد نشریات | 25 |
تعداد شمارهها | 938 |
تعداد مقالات | 7,724 |
تعداد مشاهده مقاله | 12,666,078 |
تعداد دریافت فایل اصل مقاله | 9,019,368 |
تحلیل گفتمان انتقادی توئیت ها ی ترامپ بر اساس مدل ون دایک | ||
زبان پژوهی | ||
مقاله 6، دوره 12، شماره 34 - شماره پیاپی 15، خرداد 1399، صفحه 131-156 اصل مقاله (633.49 K) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22051/jlr.2019.20256.1545 | ||
نویسندگان | ||
عزت اله کلانتری خاندانی* 1؛ محمد حسن فرخی2؛ موسی غنچه پور3 | ||
1مربی، گروه زبان، پردیس خواجه نصیر، دانشگاه فرهنگیان کرمان، ایران | ||
2گروه زبان، پردیس خواجه نصیر، دانشگاه فرهنگیان تهران | ||
3استادیار گروه زبان، پردیس خواجه نصیر، دانشگاه فرهنگیان | ||
چکیده | ||
نقش و تأثیرگذاری شبکههای اجتماعی از جمله توئیتر، انکارنشدنی است. توئیتها میتوانند کنشهای اجتماعی را شکل دهند و جامعه را به سمت و سوی ویژهای، رهبری کنند. بنابراین، تحلیل گفتمان انتقادیِ توئیتها، نوع تعاملهای میان کاربران توئیتر را بازنمایی میکند. در پژوهشِ حاضر، توئیتهای ترامپ بر پایة روش تحلیل گفتمان انتقادی وندایک واکاوی شدند. به این منظور، از ابتدای ژانویه تا انتهای مارس 2018، حدود 400 توئیت از صفحه شخصی دونالد ترامپ- رئیس جمهور وقت آمریکا، با روش تصادفیِ هدفدار، گردآوری شده و مورد بررسی قرار گرفتند. سپس دادههای پژوهش با بهرهگیری از نشانهها و عناصر زبانشناختی مدل وندایک، تفسیر و تبیین شدند. یافتهها نشان میدهند که ترامپ، در سطح معنایی از عناصر زبانشناختی بسیاری مانند مقولهبندی، قطببندی، تعمیم دادن، ایجاد فاصله، مفهوم تلویحی، مبالغه و خلاف واقع بهره میگیرد. او همچنین، در سطح سبک به واژهگزینی و حذف عمدی برخی واژهها میپردازد. علاوه بر این، تراپ در سطح استدلال مقوله استدلال را با مغالطهکاری جبران میکند. یافتههای پژوهش همچنین نمایانگر آن است که کاربران توئیتر، پیوسته در مواجهة با گفتمانهای ایدئولوژیک قرار میگیرند. این گفتمانها در جامعه، فرایند تأثیرگذاری خود را با سرعت پشت سر نهاده و پایهگذار نظریههای اجتماعی میشوند. همچنین این گفتمانها، نقش تعیینکنندهای در چگونگی زندگی و دیدگاه افراد یک گروه و یا روابط میانگروهی دارند. | ||
کلیدواژهها | ||
کلید واژه ها: ترامپ؛ توئیتر؛ تحلیل گفتمان انتقادی؛ ون دایک | ||
عنوان مقاله [English] | ||
A Critical Discourse Analysis of Trump’s tweets based on Van Dijk Model | ||
نویسندگان [English] | ||
Ezatollah Kalantari Khandani1؛ Mohammad Hasan Farrokhi2؛ Mousa Ghonchepour3 | ||
1Lecturer, Department of Persian Language and Literature, Farhangiyan University, Tehran | ||
2Lecturer, Department of Persian Language and Literature, Farhangiyan University, Tehran | ||
3Assistant Professor, Department of Persian Language and Literature, Farhangiyan University, Tehran | ||
چکیده [English] | ||
Twitter has changed the way information and data are circulated among a lot of users. Most of them are spreading through the societies, because certain thoughts and ideas are going to be imposed. Authorities have found this great powerful tool can successfully make common people make decisions as they wish to do. It seems that more than 500 million tweets are sent daily from 320 million active users across the world and it increases everyday (Twitter.com). This unbelievable number of tweets can create new groups and shape new ideologies among active users. A widespread stream of quickly communicated suppositions and thoughts might lead to uncontrollable event and supervise the life style of millions of people around the world. It might also interfere with political affairs and drastic changes happen due to intentional spread of thoughts putting policy makers in severe troubles. Amazingly, journalists make use of this tool as a monitoring system to find private and fascinating news about celebrities and famous sportsmen and women. They want to feed their media enough firsthand information to attract a lot of readers and users. They want to sell more, if they can have direct access to popular figures’ twitter page, their missions are completely done; that is why tweeter is important to them. The present study aims to study and analyze some of the issues raised by critical discourse analytical approach to the study of speeches, e.g. tweets. Since social networks have given a lot of opportunities to people put forward, acquire, express and reproduce their views, thoughts, ideologies and even their own daily routine activities largely by text or talk, a discourse analytical study of these language interactions seem to be necessary and most relevant. The more people become familiar with social media, the less they are vulnerable to be misled by indecent authorities. As present societies are now experiencing different ways for language interactions, the role and the influence of social networks, e.g. Twitter, are undeniable and need to be analyzed. The study of tweets has made the linguists believe that twitting is a kind of social action and leads to processing social issues and if tweet lexicons are chosen appropriately, they can have big effecton followers’ decisions and cause shapingideological groups. Houston and colleagues (2015) firmly believe that tweets can form social actions and guide the societies towards certain directions. The discourse analysis of tweets will reveal the type of interactions that twitter users have. It can also represent the way in which knowledge and power are produced. In other words, speech order, discourse and discourse analysis are to be seen as social productions that have changing and dynamic forces. They can have influences over social values and interactions, whether positive or negative (Ziahosseiny, 2012, p. 97). Of course, this kind of discourse analysis has to be certainly social-critical, because it has to find the roots of social problems (Ziahosseiny,2012, p. 98). That is why we have made use of critical discourse analysis to clarify the ways by which realities are represented in social networks. Although, in this paper, the main attention has been given to the discourse analysis, its theoretical structure is based on different disciplines, especially on Van Dijk triangulation of discourse, cognition and society; they are necessary for analyzing sociolinguistics phenomena. Social sciences and philosophy have made the best use of this framework and they can critically explain social actions. These can also play an important role in reshaping the traditional approaches to social events as those approaches cannot fully and adequately elaborate on the sociocognitive nature and structures of ideologies and their discursive reproduction. In the present study, Trump’s tweets are analyzed based on the aforementioned considerations related to Van Dijk model. To do that, 400 of Trump’s tweets from his twitter page, between January and March 2018, were studied. Then, based on linguistic signs and strategies put forward by Van Dijk (2003 & 2006), the tweets were analyzed carefully. Those linguistic signs and strategies are: classification, polarization, generalization, distancing, implications, hyperbole, counterfactual, contrast, lexicalization, evidentiality, comparison, fallacy and euphemism. The findings show that Trump uses these strategies to create his own ideology. They also demonstrate that Trump makes use of hyperbole instead of logical reasoning. The data indirectly prove that tweeter followers are constantly exposed to new ideologies; also, the dialogues have their own prompt influences on societies, make new social theories, play basic roles in people’s life style and create new ideologies in groups. | ||
کلیدواژهها [English] | ||
Tweet, Rhetorical analysis, Van Dijk Model, Trump, Critical discourse analysis | ||
سایر فایل های مرتبط با مقاله
|
||
مراجع | ||
استونز، راب (2009). متفکران بزرگ جامعه شناسی. ترجمه مهرداد میردامادی. چ 3. تهران: نشر مرکز. ضیاء حسینی، محمد (1391). سخن کاوی، گفتمان شناسی (انتقادی) تجزیه و تحلیل کلام. تهران: انتشارات رهنما. فاضلی، محمد (1383). «گفتمان و تحلیل گفتمان انتقادی». پژوهشنامه علوم انسانی و اجتماعی دانشگاه مازندران. سال 4. شماره 14. صص 82-107. فوکو، میشل (1378). نظم گفتار. ترجمه باقر پرهام. تهران: نشر آگاه. قایدی، فاطمه و گیتی تاکی (1395).«شیوههای گفتمانی تبلیغات روزنامهها و مجلات زبان فارسی». زبانپژوهی. سال 8. شماره 21. صص 7-30. حامدی شیروان، زهرا و سید مهدی زرقانی (1393). «تحلیل داستان رستم و شغاد بر اساس مربع ایدئولوژیک ون دایک» کاوش نامه. سال 15. شماره 28. صص 99-128. کلانتری خاندانی، عزت الله (1396). «درک الگوهای فرمانی متداول مستقیم و غیرمستقیم: بر اساس مشاهداتی از فارسی زبانان».. مجموعه مقالات نخستین همایش ملی ادب کلامی و اجتماع. به کوشش زهرا ابوالحسنی چیمه و بهروز محمودی بختیاری. تهران: نشر نویسه پارسی. صص 257 – 235. هوستون، جی برایان، جاشوا هاتورن، میتو ال اسپایلک، مالی گرین وود و مایکل اس مک کنی (1393). «توییت کردن در طول مناظره های ریاست جمهوری؛ و اثر آن بر نگرش ها نسبت به مناظره و ارزیابی نامزد ریاست جمهوری». ترجمه احمد رضا چوپانیان. مطالعات انتخابات. سال 3. شمارة 7 و 8 . صص 181-203. References
Alejandro, J. (2010). Journalism in the age of social media. Reuters Institute for the Study of Journalism website. <http:// reutersinstitute.politics.ox.ac.uk/ publication/journalism-age-social-media.>
Bloor, A., & Bloor, T. (2007). The practice of critical discourse analysis: an introduction. Oxford: Oxford University Press.
Da Silva, N. F., Hruschka, E. R., & Hruschka, J. R. (2014). Tweet sentiment analysis with classifier ensembles. Decision Support Systems, 6(6), 170-179. <https://www.researchgate.net/...Hruschka/...Tweet_Sentiment_Analysis_with_Classifier.>
Duggan, M., Ellison, N., Lampe, C., Lenhart, A., & Madden, M. (2015). Demographics of key social networking platforms. Pew Research Center website. <http://www.pewinternet.org/2015/01/09/demographics-of-key-social-networking-platforms-2/>
Fazeli, M. (2004). Discourse and critical discourse analysis. The Journal of Humanities and Social Sciences, 14(4), 82-107 [In Persian].
Foucault, M. (1971). L’ordre du discours (B. Parham, Trans.), Tehran: Agah [In Persian].
Ghaedi, F., & Taki, G. (2016). The discourse strategies of advertising in Persian magazines and newspapers. Zabanpazhuhi, 8(21) 1-7 [In Persian].
Golbeck, J., Grimes, J. M., & Rogers, A. (2010). Twitter use by the U.S. congress. Journal of the American Society for Information Science & Technology, 61(8), 1612-1621.
Hamedi Shirvan, Z., & Zarghani, S. M. (2014). Critical discourse analysis of the story of “Rostam and Shaqad” on the basis of Van Dijk’s ideological square. Kavoshnameh, 15(28), 99 -128 [In Persian].
Houston, J. B., Joshua, H., Matthew, L. S., Green wood, M., & Mitchell, S. M. (2015). Tweeting during presidential debates: effect on candidate evaluations and debate attitude (F. Izadi & H. Saghaye-Biria, Trans.), Election Studies, 7(8), 181-204 [In Persian].
Kalantari Khandani, E. (2017). Requestive speech acts realization patterns: observation from Persian. Research in Applied Linguistics, 8, 104-124.
MacWilliams, M. C. (2016). Who decides when the party doesn’t? Authoritarian voters and the rise of Donald Trump. American Political Science, 49(4), 716-721. <https://www.cambridge.org/...political-science...politics/...decides-when-the-party-does.>
McConnell, J. S. (2015). Twitter and the 2016 U.S. presidential campaign: a rhetorical analysis of tweets and media coverage [Master’s thesis, New York University]. School of Professional Studies, New York, USA.
Medina, R., & Muñoz, C. (2014). Campaigning on twitter: towards the “personal style campaign to activate the political engagement during the 2011 Spanish general elections. Comunicación Y Sociedad, 27(1), 83-106.
Mohammad, S. M., Zhu, X., Kiritchenko, S., & Martin, J. (2015). Sentiment, emotion, purpose, and style in electoral tweets. Information Processing and Management, 51, 480-499.
Rahimi, F., & Riasati, J. (2011). Critical discourse analysis: scrutinizing ideologically-driven discourses. International Journal of Humanities and Social Science, 16(1), 107-112.
Schreckinger, B. (2015). Meet the man who makes Donald Trump go viral. Politico. <http://www.politico.com/story/2015/09/trumps-social-media-guy-214309.>
Sousa, A., & Ivanova, A. (2012). Constructing digital rhetorical spaces in twitter: a case study of @barackobama. Topics in Linguistics, 9, 46-55.
Stones, R. (2009). Great thinkers of Sociology (3rd ed.). (M. Mirdamad, Trans.). Tehran: Central [In Persian].
Tumasjan, A., Sprenger, T., Sandner, P., & Welpe, I. (2010). Predicting elections with twitter: what 140 characters reveal about political sentiment. Association for the Advancement of Artificial Intelligence. <https://www.aaai.org/ocs/index.php/ICWSM/ICWSM10/paper/download/1441/1852>
Twitter (2015). Company, About [company web page]. <https://about.twitter.com/company>
Van Dijk, T. A. (1998). Ideology, a multidisciplinary approach. London: SAGE. <http: //www.discourse-insociety.org/teun.html>
Van Dijk, T. A. (1998). Social cognition and discourse. In H. Giles & R. P. Robinson (Eds.), Handbook of social psychology and language (pp 21-63). Oxford: Blackwell.
Van Dijk, T. A. (2000). News racism: a discourse analytical approach. In T. A. Van Dijk (Ed.), Ethnic minorities and the media (pp. 33-49). Philadelphia, USA: Open University Press.
Van Dijk, T. A. (2003). Ideology and discourse, multidisciplinary introduction. Barcelona: Ariel. <http: //www.discourse-insociety.org/teun.html>
Van Dijk, T. A. (2006). Ideology and discourse analysis. Journal of Political Ideology, 11(2),115-140. <www.discourses.org/OldArticles/Ideology%20and%20Discourse%20Analysis.pdf>
Ziahosseini, S. M. (2012). Discourse analysis (critical). Tehran, Rahnama Press [In Persian]. | ||
آمار تعداد مشاهده مقاله: 3,947 تعداد دریافت فایل اصل مقاله: 1,963 |