تعداد نشریات | 25 |
تعداد شمارهها | 938 |
تعداد مقالات | 7,724 |
تعداد مشاهده مقاله | 12,661,544 |
تعداد دریافت فایل اصل مقاله | 9,016,621 |
The control of nonlinear optical properties in a doped asymmetric quantum dot by the spin-orbit coupling and external electric field | ||
Journal of Interfaces, Thin Films, and Low dimensional systems | ||
دوره 3، شماره 2، شهریور 2020، صفحه 287-295 اصل مقاله (908.17 K) | ||
نوع مقاله: Original Article | ||
شناسه دیجیتال (DOI): 10.22051/jitl.2020.32337.1041 | ||
نویسنده | ||
Parinaz Hosseinpour* | ||
Department of Physics, Faculty of Sciences, Sahand University of Technology, Tabriz, Iran | ||
چکیده | ||
The Rashba spin-orbit coupling in nanostructures is an important parameter that can affect their physical properties. Hence, it is demonstrated that the nonlinear optical properties of quantum dot such as second harmonic generation and optical rectification can be controlled by the Rashba spin-orbit coupling. Also, the effect of electric field and confinement potential strength on the nonlinear optical properties is examined. Our numerical study shows that magnitude of the second harmonic generation raises when the Rashba strength increases, while its peak position is not shifted. Moreover, the optical rectification of doped asymmetric quantum dot shifts to higher energies when the electric field enhances. | ||
کلیدواژهها | ||
asymmetric quantum dot؛ nonlinear optical properties؛ Rashba spin-orbit interaction؛ direction of electric field | ||
عنوان مقاله [English] | ||
کنترل خواص اپتیکی غیرخطی در نقطه کوانتومی نامتقارن آلاییده توسط جفت شدگی اسپین-مدار راشبا و میدان الکتریکی خارجی | ||
نویسندگان [English] | ||
پریناز حسین پور | ||
گروه فیزیک، دانشکده علوم، دانشگاه صنعتی سهند، تبریز، ایران | ||
چکیده [English] | ||
جفت شدگی اسپین-مدار راشبا در نانوساختارها یک پارامتر مهم می باشد و بر روی خواص فیزیک آنها تأثیرگذار است. از اینرو، نشان داده شده است که خواص نوری غیرخطی نقطه کوانتومی از قبیل تولید هماهنگ دوم و یکسوساز نوری می تواند توسط جفت شدگی اسپین-مدار راشبا کنترل شود. همچنین، تأثیر میدان الکتریکی و پتانسیل محبوس سازی نیز بر روی خواص نوری غیرخطی بررسی شده است. مطالعات عددی نشان می دهند که مقدار SHG وقتیکه قدرت جفت شدگی افزایش می یابد، بیشتر می شود، در حالیکه مکان پیک آن جابجا نمی شود. بعلاوه، با افزایش میدان الکتریکی، میزان یکسوسازی نوری نقطه کوانتومی نامتقارن به سمت طول موجهای با انرژیی بیشتر جابجا می شود. | ||
مراجع | ||
[1] V. Vijit, P. S. Nautiyal, "Second harmonic generation in a disk shaped quantum dot in the presence of spin-orbit interaction." Physics Letters A, 382(2018) 2061.
[2] A. S. Sachrajda, Y. Feng, R. P. Taylor, G. Kirczenow, L. Henning, J. Z. P. Wang and P. T. Coleridge, "Magneto-conductance of a nanoscale anti-dot." Physical Review B, 50 (1994) 10856.
[3] V. Margulis, A.V. Shorokhov, "Hybrid–impurity resonances in anisotropic quantum dots." Physica E, 41 (2009) 483.
[4] V. D. Jovanovic, D. Indjin, N. Vukmirovic, Z. Lkonic, P. Harrison, E. H. Linfield, H. Page, X. Marcadet, C. Sirtori, C. Worall, H. A. Beere and D. A. Ritchie, "Mechanisms of dynamic range limitations in GaAs∕AlGaAs quantum-cascade lasers: Influence of injector doping." Applied Physics Letter, 86 (2005) 211117.
[5] E. Mujagic, M. Austerer, S. Schartner, M. Nobile, L. K. Hoffmann, W. Schrenk, G. Strasser, M. P. Semtsiv, I. Bayrakli, M. Wienold, W. T. Masselink, "Impact of doping on the performance of short-
wavelength InP-based quantum-cascade lasers." Applied Physics, 103 (2008) 033104.
[6] P. G. Bolcatto, C. R. Proetto, "Shape and dielectric mismatch effects in semiconductor quantum dots." Physical Review B, 59 (1999) 12487.
[7] A. Kwasniowski, J. Adamowski, "Effect of confinement potential shape on exchange interaction in coupled quantum dots." Physics Condensed Matter, 20 (2008) 215208.
[8] M. E. M-Ramos, C. A. Duque, E. Kasapoglu, H. Sari and I. Sokmen, "Linear and nonlinear optical properties in a semiconductor quantum well under intense laser radiation: Effects of applied electromagnetic fields." Journal of Luminance, 132 (2012) 901.
[9] H. Yildirim, M. Tomak, "Third‐harmonic generation in a quantum well with adjustable asymmetry under an electric field." Physics Status Solidi B, 243 (2006) 4057.
[10] S. Pal, M. Ghosh, "Tailoring nonlinear optical rectification coefficient of impurity doped quantum dots by invoking Gaussian white noise." Optical and Quantum Electronics, 48 (2016) 372.
[11] J. Ganguly, M. Ghosh, "Modulating optical second harmonic generation of impurity‐doped quantum dots in presence of Gaussian white noise." Physica Status Solidi B, 253 (2016) 1093.
[12] J. Ganguly, S. Saha, A. Bera, M. Ghosh, "Modulating optical rectification, second and third harmonic generation of doped quantum dots: Interplay between hydrostatic pressure, temperature and noise." Superlattices and Microstructures, 98 (2016) 385.
[13] Y. Qiucheng, G. Kangxian, H. Meilinm, Z. Zhongmin, L. Keyin and L. Dongfeng, "Study on the optical rectification and second-harmonic generation with position-dependent mass in a quantum well." Journal of Physics and Chemistry of Solids, 119 (2018) 50.
[14] R. L. Restrepo, E. Kasapoglu, S. Sakiroglu, F. Ungan, A. L. Morales and C. A. Duque, "Second and third harmonic generation associated to infrared transitions in a Morse quantum well under applied electric and magnetic fields." Infrared Physics and Technology, 85 (2017) 147.
[15] J. C. Martínez-Orozcoa, J. G. Rojas-Briseñoa, K. A. Rodríguez-Magdalenoa, I. Rodríguez Vargasa, M. E. Mora-Ramosb, R. L. Restrepoc, F. Ungand, E. Kasapoglue and C. A. Duque, "Effect of the magnetic field on the nonlinear optical rectification and second and third harmonic generation in double δ-doped GaAs quantum wells." Physica B, 525 (2017) 30.
[16] B. Cakir, Y. Yakar, A. Ozmen, M. O. Sezer and M. Sahin, "Linear and nonlinear optical absorption coefficients and binding energy of a spherical quantum dot." Supperlattices and Microstructure, 47 (2010) 556.
[17] G. Rezaei, S. Shojaeian Kish, "Linear and nonlinear optical properties of a hydrogenic impurity confined in a two-dimensional quantum dot: Effects of hydrostatic pressure, external electric and magnetic fields." Superlattices and Microstructures, 53 (2013) 99.
[18] T. Chen, W. Xie, S. Liang, "The nonlinear optical rectification of an ellipsoidal quantum dot with impurity in the presence of an electric field." Physica E, 44 (2012) 786.
[19] S. Yilmaz, "Nonlinear Optical Rectification and Oscillator Strength in a Spherical Quantum Dot with an Off-Center Hydrogenic Impurity in Presence of an Applied Electric Field." Computational and Theoretical Nanoscience, 10 (2013) 2019.
[20] S., Shojaei, A. Soltani Vala, "Nonlinear optical rectification of hydrogenic impurity in a disk-like parabolic quantum dot: The role of applied magnetic field." Physica E, 70 (2015) 108.
[21] P. Hosseinpour, "The role of Rashba spin-orbit interaction and external fields in the thermal properties of a doped quantum dot with Gaussian impurity." Physica B: Condensed Matter, 593 (2020) 412259.
[22] M. Kauranen, A. V. Zayats, "Nonlinear plasmonics." Nature Photonics, 6 (2012) 737.
[23] C. Forestiere, A. Capretti, G. Miano, "Surface integral method for second harmonic generation in metal nanoparticles including both local-surface and nonlocal-bulk sources." JOSA B, 30 (2013) 2355.
[24] M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, "Sensitive measurement of optical nonlinearities using a single beam." Quantum Electronics, IEEE Journal, 26(1990) 760.
[25] I. Karabulut, U. Atav, H. Safak, "Comment on “Electric field effect on the second-order nonlinear optical properties of parabolic and semi-parabolic quantum wells.”" Physical Review B, 72 (2005). 207301.
[26] Z. Wangjian, "A study of electric-field-induced second-harmonic generation in asymmetrical Gaussian potential quantum wells." Physica B, 454 (2014) 50.
[27] R. C. Ashoori, "Electrons in artificial atoms." Nature, 379 (1996) 413.
[28] M. A. Kastner, "Artificial Atoms." Physics Today, 46 (1993) 24.
[29] S. Shao, K. -X. Guo, Z. -H. Zhang, N. Li and C. Peng, "Studies on the second-harmonic generations in cubical quantum dots with applied electric field." Physica B, 406 (2011) 393.
[30] I. V. Martynenko, A. P. Litvin, F. P. Milton, A. V. Baranov, A. V. Fedorov and Y. K. Gunko, "Application of Semiconductor Quantum Dots in Bioimaging and Biosensing." Journal of Materials Chemistry B, 5 (2017) 6701.
[31] S. M. Reimann, M. Manninen, "Electronic structure of quantum dots." Reviews of Modern Physics, 74 (2002) 1283.
[32] N. Kumar Datta, M. Ghosh, "Oscillatory impurity potential induced dynamics of doped quantum dots: Analysis based on coupled influence of impurity coordinate and impurity influenced domain." Chemical Physics, 372(2010) 82.
[33] G. Dresselhause, "Spin-orbit coupling effects in zinc-blends structures." Physical Review, 100 (1955) 580.
[34] E. I. Rashba, "Properties of semiconductors with an extremum loop. 1. Cyclotron and combinational resonance in a magnetic field perpendicular to the plane of the loop." Soviet Physics-Solid State, 2 (1960) 1109.
[35] N. Kumar Datta, M. Ghosh, "Impurity strength and impurity domain modulated frequency‐dependent linear and second non‐linear response properties of doped quantum dots.” Physica Status Solidi B, 248 (2011) 1941.
[36] P. Hosseinpour, J. Barvestani, A. Soltani-Vala, "Rashba spin–orbit interaction effect on the optical properties of a disk-like quantum dot", Physica Scripta, 91 (2016) 045803. | ||
آمار تعداد مشاهده مقاله: 362 تعداد دریافت فایل اصل مقاله: 264 |