
Journal of Interfaces, Thin films, and Low dimensional systems 4 (1) Summer and Autumn (2020) 339-346 
 

*Corresponding author.  

  Email address: jahanshir@bzeng.ikiu.ac.ir 

  DOI: 10.22051/jitl.2021.36935.1057 

 

 

Spin-orbit interactions at finite temperature in low dimensional bound states  

Scientific research paper 

Arezu Jahanshir 

Department of Physics and Engineering Sciences, Imam Khomeini International University, Buein Zahra Higher 

Education Centre of Engineering and Technology, Iran 

  ARTICLE INFO ABSTRACT 

    Article history: 
   Received 15 July 2021 
   Revised 4 August 2021 
   Accepted 5 August 2021 
   Available online 26 October 2021 
    

   Keywords: 

   Bound state 
   Excitation 
   Relativistic mass 
   Spin interactions   

 Spin-orbit interactions of exciton relativistic bound states at a finite temperature in the 

framework of the projective unitary representation in a physics model with the Coulomb 

potential have been investigated. The ground state of the system in order to describe the 

temperature effect in a low dimension environment has been defined. The bound state, 

with electron-hole pair, has attracted a great deal of interest in thin-films and nanophysics. 

The reality of the state has been the subject of intense concern among theoreticians and 

experimenters in recent years. Spin-orbit interactions of exciton are considered to be in 

an electron-hole pair bound state. The problem of spin interactions of coupled states based 

on the quantum field theory in its widest sense is a method to control and achieve 

reasonable goals; and in this article, the problem is examined in details. The structure of 

the interaction Hamiltonian with the Coulomb type potential at finite temperatures is 

defined and then the mass and energy spectra of an exciton based on the spin interactions 

are determined theoretically. The defined properties at finite temperature can be used for 

new high technology materials of semi-conductive features for electronics, 

microelectronics, photovoltaic or solar cell manufacturing, and semiconductor chips. 

1 Introduction 

 One of the well-known methods of considering 

interactions of the exciton state in low dimension thin 

films and materials was proposed in 1995, where the 

asymptotic of Green's function was obtained in the 

exponential form of propagators in an external field 

[1,2]. The method is applied to the basic fundamental 

model of quantum electrodynamics and quantum field 

theory. The polarization closed loop function through a 

functional integral is presented in this approach; this 

functional integral cannot be calculated as usual; in this 

case, we have to simplify physical assumptions as done 

in [1-4]. An alternative method of calculating the 

functional integral and determining the exciton 

properties at finite temperatures is defined in the 

quantum field theory.  The finite temperature-dependent 

in a low dimension environment like thin films is a very 

important subject in theoretical and experimental 

physics. 

 Progress of exotic bound state physics in low 

dimensional transition semiconductor quantum dots 

allows exotic constructions, including poly-excitonic 
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systems, to be synthesized [1,2]. Specifically, a finite 

number of poly-excitons can be confined in a bounded 

volume of the order of normal-sized low-dimensional 

materials at a finite temperature. Therefore, the poly-

excitonic environments have recently gained attention 

in theoretical investigations and experimental 

explorations. Theoretical physicists are interested in the 

possibility of controlling the properties of these 

materials at finite temperatures that could be 

implemented in new high technology materials of semi-

conductive and conductive features for electronics, 

microelectronics, fuel cell production, photovoltaic or 

solar cell manufacturing, and semiconductor chips. The 

electron-hole state is the simplest model of bounding 

states to use when studying the essential features of ploy 

excitonic systems. Recently, the study of excitons has 

progressed significantly. 

 Among poly excitonic systems in low dimensional thin 

films, spin-orbit interactions of two exciton pairs are 

especially interesting because of their interaction effects 

in bound states. Many new poly excitonic bound states 

have been recently discovered following developments 

at finite temperatures and higher bandgaps making poly 

excitonic states to become the main topic of studies on 

low dimension materials and thin films. Many 

theoretical works have focused on determining or 

predicting the relativistic properties and conditions of 

poly excitonic states. 

 The present article investigates the asymptotic behavior 

of the correlation functions of charged fields and the 

analytic method for determining properties of poly 

excitonic states in a low dimension material at a finite 

temperature. According to the results, in the poly 

excitonic system, the total mass of the bound state 

differs from hole and electron masses in a free state. 

This work represents a theoretical and analytical effort 

where its outcome provides fundamental quantities of 

the poly excitonic electron-hole bound states. This 

outcome leads to make several predictions of the 

excitons in low dimension thin films and semiconductor 

quantum dots at a finite temperature. We choose to use 

the strong Coulomb interaction at a finite temperature 

as it plays a significant role in thin-film physics. The 

Schrodinger equation solutions for the Coulomb 

potential are known and can be obtained using various 

methods. In this article, we calculate the effect of the 

spin-orbit interaction in the bound state of poly 

excitonic systems in the ground state. Various analytical 

or numerical approximation methods have been 

developed to compensate for the fact that the relativistic 

Schrodinger equation for such a system does not 

produce solutions. In this way, one can demonstrate the 

projective unitary representation in physics [3,4] when 

calculating the properties of poly excitonic states. This 

technique can be used to accurately describe the 

characteristics of poly excitonic systems in thin films at 

finite temperatures. Thus, it is essential to develop the 

projective unitary representation in low dimension 

physics, as it describes the bound-state characteristics of 

systems such as exciton, diexciton, and poly excitonic 

systems. 

2 Materials and methods 

2.1 Mass spectrum in the relativistic limit  

 To define spin-orbit interactions in the poly-excitonic 

bound states at low dimensional materials at a finite 

temperature based on quantum electrodynamic filed and 

photon interaction wave function between electron-

hole, we have to describe the main formula which 

contains the mass and energy eigenvalues. The 

temperature relation for the one-photon exchange 

(Coulomb potential) describes the new characteristic of 

the poly excitonic bound state in low dimension thin 

films and materials [2,5,6]. 

 We try to describe interaction in temperature-

dependent conditions by modified radial Schrödinger 

equation and using the analytic method based on the 

behavior of the correlation function of a photon at a 

finite temperature in the electromagnetic field. The 

determination of mass spectrum of poly excitonic 

systems is suggested within this idea where the binding 

energy and mass of the bound states are determined. 

The exciton-exciton, three excitons, etc. states include 

those which fit in the well-known states. They include 

in the multi-electron-hole states. 

 The exciton bound system is an electron-hole state that 

has been studied in the electrostatic field and framework 

methods such as the Gaussian expansion method, the 

quantum electrodynamics sum rules, and the Lattice 

quantum dynamics. Therefore, based on the quantum 

electrodynamic models and quantum field theory we 

can determine that the electron-hole system is one of the 

most crucial states which makes it possible to form 
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bound states of gauge bosons at low/high finite 

temperatures.  

 In this article, we show that the mass spectrum of the 

exciton state is extremely higher than predicted in 

theory at a finite temperature. We study exciton spin-

orbit interactions at a finite temperature using the 

Gaussian asymptotic [2,3] behavior of the correlation 

functions of the corresponding field currents for the 

determination of the energy and mass spectrum in the 

ground state with the spin interactions in the Coulomb 

potential at a finite temperature. The mass spectrum and 

the constituent mass of the electron-hole system are 

determined from the modified Schrödinger equation for 

Hamiltonian of the Schrödinger equation [5,6] 

������ = ����� = 	
�������.                                 (1) 

Now we describe the method: as we know, in the 

quantum field, the mass of the coupled particles is 

presented by the Gaussian shape of the correlated-

current function and the exact orbital quantum numbers. 

The statistical correlation, in terms of the Green 

function ����, is expressed. It is defined as a functional 

integral and allows the necessary Gaussian limit to be 

allocated before one can carry out the average value of 

the external gauge field. 

 In nonrelativistic quantum mechanics, the resulting 

image of presentation is similar to the Feynman 

functional path integral. Hence, the mass of coupled 

electron-hole is determined by the polarization function 

(statistical correlation) 

( ) ( ) ( ) ,*| |П r G r A G r Ae h A
= and the Green’s 

function ���� [5]. We know, the current of scalar 

charged particles is ���� = ���������� where it is 

convenient to represent the considered correlators as the 

average over the gauge field � ��� of a product of the 

Green’s functions of the scalar charged electron hole in 

the electromagnetic field. The Green’s function of the 

scalar charged electron and hole is defined by the 

equation 

��� ��� + �
�ℏ�����

� + ����ℏ� � ���|�� =  ���.         �2�                                                   

                                                   

Solution of the Green’s function is described in the 

functional integral form (for full detail see [2]) 

���|�� = " #$%

 exp)−��+, -. ×

exp 0−$ " #1 2� ����1�3



+ �� 4��1�56�7  ���.             �3�
Also, we know the coupled gluon-gluon mass spectrum 

is explain in relativistic-quantum theory by the 

polarization function (for full detail see [2]) 

9�:� =A∙ �<��� =
" " #=3#=��8�?���

%



%

 exp @−� ��� � + �AB �<���,
where 

���� =
= D3D� E  �3 �� exp F− 12 " #1H


 I��J3��1�
+ ��J���1��K expL−M3,3 + M3,� − M�,�N.
The functional integral ����

looks like the Feynman 

path integral in nonrelativistic quantum mechanics for 

four-dimensional motion of particles with reduced mass  �. The interaction of these particles is defined by the 

nonlocal functional MO,P which contains potential and 

nonpotential interactions. The asymptotic of the 

function �<��� looks like �<���~R4�STℓ�<�5. Thus, we 

obtain:  

П��� ≅⇒ exp I−�WП�����,
� = − X��|S|→∞

XZП ���|�| .                                                      �4�
After simplifying the equation, the mass spectrum reads 

(� = 1,2) 

� = ���O 2\���3� + �3���2�3�� ] + �2 + 	���6.               �5�
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 Therefore, the electron-hole system with the rest mass 

(�3 = �_ , � ̀ = �� ), the exciton bound state mass in 

the stationary state reads  

� = ���3 \���3� + �3���2�3�� + �2 + 	ℓ���] ,
     

� = ���� \���3� + �3���2�3�� + �2 + 	ℓ���] ,      
      
� = �3 + ���3�� .                                                                     �6�
By using the Taylor approximation one can determine 

the parameters � = 1,2 as follows 

�O = ����3O = 0 ⇒
                         

�3de�3� + �� \ R�f?gS]� →
�_de�_� + �� \ R�f?gS]� → 
�∗_de�_∗� + �� \ R�f?gS]� ,
and 

��de��� + �� \ R�f?gS]� →
                           

�`de��̀ + �� \ R�f?gS]� →
        

�∗`de�∗̀� + �� \ R�f?gS]� ,                                           �7�
where  �_∗, �∗̀  are the electron and hole effective mass, 

and �_ , � ̀ are the electron and hole rest mass. Based 

on the electron-hole interaction we use the effective 

mass, constituent mass, and reduced mass as expressed 

by �_∗ = �_ , �∗̀ = � ̀ , in the following expressions 

� = �∗ = �∗3 + �∗��∗3�∗� , 
�∗3 = � 3. �∗� = � � ,
and also from Eq. (4) we define  

	ℓ��� = � − 12 ���_ + �`� − �_��` + ��̀�_2�_�` ,
	ℓj = #	ℓ #� .                                                                          �8�
as we know that �<���~R4�STℓ�<�5.                                      
 In Eq. (7) the particle's effective mass (denoted by � ∗} is the mass that it seems to have when 

responding to forces, or the mass that it seems to 

have when interacting with other identical particles 

in a thermal distribution. One of the results from 

the bound state theory of exciton is that the 

movement of electron-hole in a potential field can 

be very different from their motion in a vacuum [7]. 

The effective mass is a quantity that is used to 

describe exciton’s bound states by modeling the 

behavior of a free particle (electron-hole) with that 

mass. For some purposes and some nanomaterials, 

the effective mass can be considered to be a simple 

constant of a material while the value of effective 

mass depends on the purpose for which it is used, 

and can vary depending on several factors [7] 

especially in nano quantum dots. For electrons or 

electron holes in a solid, the effective mass is 

usually stated in units of the rest mass of an 

electron (9.11×10−31 kg). In these units, it is 

usually in the range 0.01 to 10, but can also be 

lower or higher—for example, reaching 1000 in 

exotic heavy fermion materials, or anywhere from 

zero to infinity (depending on definition) in 

graphene. As it simplifies the more general band 

theory, the electronic effective mass can be seen as 

an important basic parameter that influences 

measurable properties of a solid, including 

everything from the efficiency of a solar cell to the 

speed of an integrated circuit. 



Journal of Interfaces, Thin films, and Low dimensional systems 4 (1) Summer and Autumn (2020) 339-346 
 

343 

 

3 Schrödinger equation for the bound 

state  

The radial Schrödinger equation for the multiplex 
system with Coulomb interaction is [5]: 
  � = �
 + ��klOm =  3� ∑ �OmOd3 oO� + ∑ pOqPm�3Od3 + ��klOm.           (9)                        

Now, for defining characteristics of the excitonic 

systems in the electromagnetic field interactions, we use 

the bound state in the electrical confining potential at 

the finite temperature p��, -� = − r�S,s�S [7].  In this 

case, using the modified radial relativistic Schrödinger 

equation (Eq. (9)), we have 

������ = ����� = 	ℓ�������.
����� =  2W�_� + t̂

S� + v�` � +t̂ S� +
p��. -�6 ����.                                                              �10�

                                         

Now, we explain the relativistic effects on the bound 

states using explanations I and II:  

w. v� � + t̂S� = �e1 + t̂S�� � 
 ≈

≈ � + t̂S�2�  − t̂Sy8�z  + ⋯,
ww. v� � + t̂S� ≈ min< \� + � � + t̂S�� ].
Two approximate methods are usually used for 

predicting the structure of the bound states before 

obtaining the Hamiltonian of the bound state as (ℏ =� = 1) 

�12 \�3 + �_� + t̂S��_ ] + 12 \�� + ��̀ + t̂S��` ]
+ ���. -�� � ���� = �����.        �11� 

or                                                

�t̂S�2� + ���. -�� �  ����
= �� − 12 ��_ + �`�
− �_��` + ��̀�_�_�` � ����,                �12�  

where � is the reduced mass and �_,`�� the constituent 

mass of particles in the bounding system. The n-

dimensional modified Schrödinger equation could be 

presented using [8-10] 

12�m�3 ##� ��m�3 ##�A ���� 

− ℓ�ℓ + Z − 2�2�� ���� + �p��. -�����
+� \� − 12 ��_ + �`� − �_��` + ��̀�_�_�` ] ����
= 0.                                                                    �13� 

Spin-orbit interactions at finite temperature in low 
dimensional bound states can be presented in the 
potential types: Cornell, Coulombic, and strong 
interactions by the exponential relations [8].              
The Coulomb-temperature potential is described             
by the exponential function p��, -� ≈− 3S exp�−��-���-��� the reduced mass [7] at  - ≠ 0. Using the approximation of the exponential 
function  

exp�−��-���-��� = � \�−��-���-���mZ! ]%
md
 ,

we obtain  

p��, -� ≈ − 1� + +�-���-� − ��-����-����+. ..
Therefore, the Hamiltoni of the exciton system is as 

follows [11,5] 

�−12� � ����� + 2� ��� − ℓ����
+ + �−1 + +�-���-�� − ��-����-������
+ �klOmk� ����
= 	
�������.                                                                    �14�
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One can describe the exact temperature relation in the 

Coulomb potential by 

p��, -� = �R�<�s�S =
      = � \1 − ��-�� + ���-����2

 ].
We modify the variables in the starting Schrödinger 

equation based on the projective unitary representation 

method in the quantum field theory for the ground state 

at a finite temperature with described spin-orbit 

interactions. This state is described as an infinite 

number of oscillators that keep their oscillating 

character in interactions. 

 To use quantum field methods, we have to change 

variables in Eq. (14) for the linear interaction terms of 

the Coulomb potential by replacing a new variable in 

the f-dimensional axillary space. Now, based on the 

asymptotic properties (� → ∞, � → 0� of Gaussian 

type � = ��� and  ���� → ���� = ��������,  where �
is a parameter to be determined; in the charge potential 

such a modification is performed by � ≅ 1 where the 

electron-hole wave function becomes an oscillator. 

Using the radial Laplacian operator in the Z-dimension 

space one can define the radial Laplacian operator in the f-dimensional (f = 2� + 2� axillary space [2]: 

�S = #�#�� + Z − 1� ##� →
�� = #�#�� + f − 1� ##�.

where 

# #� = #�#� ##� = 2 ##� \� 3��]6 ##� = � 12� �3���A ##�,
#� 
#�� = ##� ##� = � 14�� ���y�A × \ #� 

#�� + 1 − 2�� ##�].
Here, the wave function should have the Gaussian type 

solution for large distances and we apply the projective 

unitary representation method variables from ���� →�������� and the transformation canonical variables as 

Wick ordering creation and annihilation operators (see 

[2] for more details) �� = r���r��
W��� ,   t̂� = v��� r���r��

O  , then 

determine  

�� = f2�
 ,      �y = f�f + 2�4�
� ,     t� = f�
2
and define the Hamiltonian (14). Equation (14) in a new 

auxiliary space is obtained 

g
�	ℓ, -� = t̂��2 �����  + 4����klOm����� − 4���	
�����+ �−4� + 4+���� − 4��z�y������= 0 .                                                     �17�
Now, we can find the renormalization of the bound state 

parameters like wave function which allows us to 

introduce the zero approximation in the projective 

unitary representation method and then find the 

eigenvalue of the ground state energy g
�	
�. Thus, Eq. 

(17) is written in the form 

g
�	
. -� = ��-. �
� − 	
��-. �
� = 0,
or 

g
�	
. -� = �f4 �
 − 4� +
+ 2�f�
 �3∇Sp���������� + 2�f�
 �∆Sp����� �� _�� `�  

+ 2+��f�
 − ��zf�f + 2��
� � − 2�f�
 	
 = 0, �18�
where we suppose ��� = ��3 + ���  (��3 = �_ ,    ��� = �`) 

for the sum of two particles’ spin in the exciton system 

(spin-orbital and spin-spin equations) where we will 

have 

�klOm = ��� + ��� →
��� = 2�f�
 �3∇Sp����������,  
��� = �<f�� �∆Sp����� �� 3�� ��,        
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( )

( )

1 1 2 2

1 2

,

( 1) ( 1) ( 1)ˆ ˆ( ) ,
2

( 1) ( 1) ( 1)ˆˆ( ) ,
2

j S

S S S S S S
S S

j j S S
LS

= +

+ − + − +
=

+ − + − +
=

l

l l

                     (19) 

where based on the projective unitary representation 

conditions (Eq. (18)), we find 

g
�	
, -� = 0,   #g
�	
, �#�
 = 0,                                �20
�and the ground state energy 	
 = 	
��. -� and  also the 

pure oscillator frequency of the exciton system in the 

ground state �
 = �
�	
, -� at a finite temperature. 

The pure oscillator frequency of the exciton system in 

the Coulomb potential without temperature relation 

reads �
 = W−8� 	�� �. Thus, using formulas (18, 20) 

and (7), then one can determine the mass spectrum of 

the predicted bound state. Based on Eq. (20), the 

electron-hole system as an exciton bound state solution 

by the radial modified Schrödinger equation at a finite 

temperature has been described. For this opinion, the 

projective unitary method of the Schrödinger equation 

is used. The behavior of the exciton bound state at a high 

temperature is very important in low dimension 

materials and thin-film environments. We have 

presented the bound state spin-orbit and relativistic 

mass spectrum based on quantum field theory and have 

determined the relationship between mass spectrum and 

temperature in the Coulomb type potential at a finite 

temperature. The temperature-dependent radial 

modified Schrödinger equation is investigated by 

applying the projective unitary method in the ground 

state wave function of the exciton bound system �ℓ =0, f = 3�. Now, we determine the finite temperature as 

described by [2,12] nonzero and zero temperature spin 

interactions and mass spectrum of the electron-hole. 

Theoretically, results for the spin-orbit interactions are 

presented. Results are used for describing 

�
 = ��� �
�	
, -��� exp I−μ zy�.                         �21�                                      
 The temperature-dependent of exotic electron-hole 

bound state in Molybdenum disulfide (or moly) QDs are 

currently fascinating subjects in SQDs physics. 

Therefore, based on Eqs. (17)-(19) we calculate the 

mass spectrum of moly QDs with and without spin-orbit 

interactions at the  finite temperature that corresponds 

to the in-plate directions of the dielectric constant (gS||). 

The mass spectrum of exciton in the 1s, 2s, and 3s states 

for Molybdenum disulfide quantum dots as a function 

of temperature based on spin-orbit interactions is 

presented in Fig. 1. We may conclude that our current 

results as presented in Fig. 1, are in good agreement 

with currently available experimental data for all states 

of exotic exciton bound state in nano quantum dots [15]. 

The present paper proposed a method for theoretically 

determining the relativistic mass spectrum of exciton at 

finite a temperature with spin interactions and also 

energy eigenvalue within the framework of the QFT, 

QED. An analytic expression was given for masses of 

exotic systems while considering relativistic 

corrections.  

Figure 1. The mass spectrum of exciton in 1s, 2s, and 3s states as a 

function of temperature based on spin-orbit interactions.   

4 Conclusions  
 

 The spin-orbit interactions and the relativistic 

correction to the mass of the electron-hole bound state 

at a finite temperature in low dimension materials and 

thin-films under the projective unitary representation 

are defined theoretically.  For determining the spin-orbit 

interactions at a finite temperature we used the 

Coulomb potential-temperature relation as an 

exponential function and modified the radial 

Schrödinger equation.  The formulas show that the high-

temperature environment, can be affected by the 

characteristics of the electron-hole bound state in thin 

firms. 

 Based on the description method one can conclude that 

the theoretical results of this work are expected to define 

new possibilities and properties of thin films at a finite 
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temperature which can be used for new materials, 

microelectronics production, and semiconductor chips.  

 The obtained theoretical data can be useful in today’s 

researches and can open high perspectives to determine 

the new characteristics of poly-excitonic systems. We 

have studied the exciton properties in thin films at finite 

temperatures. We have calculated the constituent mass 

of particles based on relativistic correction to the mass. 

In the above calculations, we have theoretically found 

that the relativistic behavior on the mass of electron-

hole in the exciton system increases with increasing 

temperature. The mass of the exciton system in 1s, 2s 

and 3s states as a function of temperature based on spin-

orbit interactions are determined and calculated. Based 

on �
 = W−8� 	(� ). The ground state amplitude at 

finite temperature - > -
 will be higher than the 

amplitude at -
 (-
 is the laboratory or 

room temperature or usually either (-
 =20÷25 C).  
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