تعداد نشریات | 25 |
تعداد شمارهها | 938 |
تعداد مقالات | 7,713 |
تعداد مشاهده مقاله | 12,653,920 |
تعداد دریافت فایل اصل مقاله | 9,011,105 |
تجزیه و تحلیل میزان ریسک سیستمی شرکتهای بورس اوراق بهادار تهران با استفاده از رویکرد سیستمهای پیچیده | ||
راهبرد مدیریت مالی | ||
مقاله 5، دوره 10، شماره 1 - شماره پیاپی 36، فروردین 1401، صفحه 91-112 اصل مقاله (1.11 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22051/jfm.2020.30910.2360 | ||
نویسندگان | ||
علی نمکی1؛ عزت اله عباسیان2؛ الهه شفیعی* 3 | ||
1گروه مالی، دانشکده مدیریت دانشگاه تهران، تهران، ایران | ||
2گروه مدیریت دولتی، دانشکده مدیریت دانشگاه تهران، تهران، ایران | ||
3مدیریت مالی، گرایش مهندسی مالی و مدیریت ریسک، دانشگاه تهران پردیس البرز، تهران، ایران | ||
چکیده | ||
امروزه با درهم تنیدگی بازارهای مالی، استفاده از ایده سیستم های پیچیده جهت تحلیل بازار بسیار مورد توجه قرار گرفته است. از طرفی با گسترش تعاملات بین بازارها، شرکت ها و نهادهای مالی، مفهوم ریسک سیستمی و همچنین تاثیر ساختار شبکه مالی بر میزان ریسک سیستمی اجزای آن، از موارد مهم برای سیاست گزاران، قانون گذاران، سرمایه گذاران و ... از حیث کنترل و مدیریت ریسک بوده و حائز اهمیت است. این پژوهش، به تجزیه و تحلیل ساختار توپولوژی محلی موسسات مالی در شبکه مالی بر میزان ریسک سیستمی بیست شرکت فعالتر بورس اوراق بهادار تهران از ابتدای سال 1393 تا پایان سال 1397، با بکارگیری سنجه ارزش در معرض خطر شرطی تفاضلی (CoVaR∆) می پردازد. ابتدا برای محاسبه ماتریس همبستگی شرطی، از مدل GARCH چند متغیره همبستگی شرطی پویا (DCC-MVGARCH)، استفاده و درخت مینیمم پوشا (MST) ایجاد می شود. سپس به محاسبه خصوصیات توپولوژی شبکه موسسات مالی در شبکه مالی مورد نظر و بررسی روابط میان خصوصیات و ریسک سیستمی پرداخته می شود. با کمی سازی رابطه بین ساختار توپولوژی محلی و میزان ریسک سیستمی با تحلیل رگرسیون دادههای پانلی، میتوان دریافت که رابطه معناداری میان مرکزیت نزدیکی گره، قدرت گره و درجه گره با ارزش در معرض خطر شرطی تفاضلی و بنابراین میزان ریسک سیستمی وجود دارد. بررسیها نشان می دهد که موسسات مالی با مرکزیت نزدیکی بیشتر، میزان ریسک سیستمی بیشتری دارند و همچنین موسسات مالی با قدرت گره کمتر و درجه گره کوچکتر، میزان بیشتری از ریسک سیستمی را دارا هستند. اما با دادههای مورد بررسی در این پژوهش، رابطه معنادار میان مرکزیت بینابینی گره و میزان ریسک سیستمی موسسات یافت نشد. | ||
کلیدواژهها | ||
میزان ریسک سیستمی؛ همبستگی شرطی پویا؛ شبکه های پیچیده؛ درخت مینیمم پوشا | ||
عنوان مقاله [English] | ||
Analyzing of Systemic Risk Contributions of Tehran Stock Exchange Companies by Complexity Approach | ||
نویسندگان [English] | ||
Ali Namaki1؛ Ezatollah Abbasian2؛ Elahe Shafiei3 | ||
1Faculty of Management, Tehran University, Tehran, Iran | ||
2Department of Public Administration, Faculty of Management, Tehran University, Tehran, Iran | ||
3Financial Engineering & Risk Management, Alborz Complex Tehran University, Iran | ||
چکیده [English] | ||
With the recent extension of markets and increasing financial interactions, institutions are affected by their systemic risk and the systemic risk of other institutions and markets. Also, by changing the structure and characteristics of institutions in their complex network, the Systemic risk contribution of these institutions will be different. It is important for lawmakers, investors, and others to control, manage and reduce systemic relationship between local topology structure and systemic risk contribution by panel data regression analysis, it found that there is a significant relationship between the change of Conditional Value-at-Risk (∆CoVaR) and the local topology structure such as node closeness centrality, node strength, and node degree. So, there is a significant relationship between systemic risk contribution and the local topology structure. The results show that there is a positive relationship between systemic risk contribution and node closeness centrality, so financial institutions with larger node closeness centrality have higher systemic risk contributions. Also, there is a negative relationship between systemic risk contribution and node strength and node degree. Therefore, financial institutions with greater node strength and larger node degrees have lower systemic risk contributions. But with the data analyzed in this study, no significant relationship is found between node betweenness centrality and systemic risk contributions.risk. The purpose of this paper is to analyze the structure of the financial institutions' local topology on their systemic risk contribution. The purpose of this study is to investigate the contribution of systemic risk, using Tehran stock exchange data (on twenty stock companies from March 2014 to March 2019) with the change of Conditional Value-at-Risk (∆CoVaR). Initially, a dynamic conditional correlation multivariate GARCH model (DCC-MVGARCH) is used to calculate the conditional correlation matrix and the minimum spanning tree (MST) is constructed. Then, the topology structure of the financial institutions' network and relationships between these characteristics and systemic risk is estimated. By quantifying the | ||
کلیدواژهها [English] | ||
Systemic RiskContribution, DCC, Complex Networks, Minimum Spanning Tree | ||
مراجع | ||
مرادمند جلالی، میلاد و حسنلو، خدیجه. (1395). ارزیابی سهم بانکها، بیمه و شرکتهای سرمایهگذاری در ریسک سیستمیک. مطالعات مالی و بانکداری اسلامی، 2(4)، 92-67.
احمدی، زانیار و فراهانیان، سید محمدجواد. (1393). اندازهگیری ریسک فراگیر با رویکرد CoVaR و MES در بورس اوراق بهادار تهران. بورس اوراق بهادار تهران، 7(26)، 22-3.
باباجانی، جعفر.، بولو، قاسم و غزالی، امین. (1397). ارائه چارچوبی جهت سنجش و پیشبینی ریسک سیستمی با رویکرد ریزش مورد انتظار نهایی (MES) در بازار سرمایه ایران. راهبرد مدیریت مالی، 6(22)، 29-1.
حکمتی فرید، صمد.، رضازاده، علی و مالک، علی. (1397). برآورد ریسک سیستمی در بخشهای مالی اقتصاد ایران (رهیافت ارزش در معرض ریسک شرطی تفاضلی). مدلسازی اقتصادی، 12(3)، 122-99.
رادفر، ممحمدرضا.، کریمخانی، مسعود و علیقلی، منصوره. (1399). بررسی رابطه اندازه بانک و سرمایه با ریسک سیستمی در بانکهای پذیرفته شده در بورس اوراق بهادار. راهبرد مدیریت مالی، 7(28)، 126-107.
نظری، نگار. (1390). تحلیل خوشهای شرکتهای پذیرفته شده در بورس اوراق بهادار تهران با استفاده از درخت حداقل پیما و درخت زنجیره. پایاننامة کارشناسی ارشد مدیریت مالی، دانشکده علوم اجتماعی و اقتصاد، دانشگاه الزهرا.
نورعلیدخت، سمیرا. (1395). مقاومت به سرایت نکول در شبکههای مالی. پایاننامۀ کارشناسی ارشد، دانشکدۀ ریاضیات و کامپیوتر، دانشگاه تحصیلات تکمیلی علوم پایۀ زنجان
Acemoglu, D., Ozdaglar, A. & Tahbaz-Salehi, A. (2015). Systemic risk and stability in financial networks. American Economic Review, 105(2), 564-608.
Adrian, T. & Shin, H. S. (2008). Liquidity, monetary policy, and financial cycles. Economics and Finance, 14(1), 1-7.
Adrian, T. & Brunnermeier, M. K. (2016). CoVaR. The American Economic Review, 106(7), 1705-1741.
Acharya, V. V., Pedersen, L. H., Philippon, T. & Richardson, M. (2017). Measuring systemic risk. The Review of Financial Studies, 30(1), 2-47.
Ahmadi, A ., Farahanian, S. M. J. (2014). Systemic risk measuring in Tehran Stock Exchange with CoVaR and MES approaches. Journal of Securities Exchange, 7(26), 3-22. (In Prsian )
Babajani, J., Bolo, G. & Ghazali, A. (2018). A framework for measuring and predicting systemic risk with the marginal expected shortfall approach (MES) in Iran capital market. Journal of Financial Management Strategy, 6(22), 1-29. (In Prsian )
Bernal, O., Gnabo, J. Y. & Guilmin, G. (2014). Assessing the contribution of banks, insurance and other financial services to systemic risk. Journal of Banking & Finance, 47(C), 270-287.
Boginski, V., Butenko, S. & Pardalos, P. M. (2006). Mining market data: a network approach. Computers & Operations Research, 33(11), 3171-3184.
Bollerslev, T. (1986). Glossary to arch (garch. In in volatility and time series econometrics essays in honor of Robert Engle. MarkWatson, Tim Bollerslev and Jerey.
Campbell, R., Huisman, R. & Koedijk, K. (2001). Optimal portfolio selection in a Value-at-Risk framework. Journal of Banking & Finance, 25(9), 1789-1804.
Derbali, A. & Hallara, S. (2016). Systemic risk of European financial institutions: Estimation and ranking by the Marginal Expected Shortfall. Research in International Business and Finance, 37, 113-134.
Engle, R. F. & Sheppard, K. (2001). Theoretical and empirical properties of dynamic conditional correlation multivariate GARCH. No 8554, NBER Working Papers from National Bureau of Economic Research, Inc.
Engle, R. (2002). Dynamic conditional correlation: A simple class of multivariate generalized autoregressive conditional heteroskedasticity models. Journal of Business & Economic Statistics, 20(3), 339-350.
Girardi, G. & Ergün, A. T. (2013). Systemic risk measurement: Multivariate GARCH estimation of CoVaR. Journal of Banking & Finance, 37(8), 3169-3180.
Gower, J. C. (1971). A general coefficient of similarity and some of its properties. Biometrics, 27(4), 857-871.
Hekmati Farid, S., Rezazadeh, A. & Malek, A. (2019). The estimation of systematic risk in Iranian financial sectors (ΔCoVaR Approach). Economic Modeling, 12(43), 9-122. (In Prsian)
Huang, W. Q., Zhuang, X. T., Yao, S. & Uryasev, S. (2016). A financial network perspective of financial institutions’ systemic risk contributions. Physica A: Statistical Mechanics and its Applications, 456(C), 183-196.
Krause, A. & Giansante, S. (2012). Interbank lending and the spread of bank failures: A network model of systemic risk. Journal of Economic Behavior & Organization, 83(3), 583-608.
Long, H., Zhang, J. & Tang, N. (2017). Does network topology influence systemic risk contribution? A perspective from the industry indices in Chinese stock market. PloS one, 12(7), e0180382.
López-Espinosa, G., Moreno, A., Rubia, A. & Valderrama, L. (2012). Short-term wholesale funding and systemic risk: A global CoVaR approach. Journal of Banking & Finance, 36(12), 3150-3162.
Mantegna, R. N. (1999). Hierarchical structure in financial markets. The European Physical Journal B-Condensed Matter and Complex Systems, 11(1), 193-197.
Moradmand Jalali, M. & Hasanlou, K. (2017). The assessment of share of banks, insurance and investment companies in systemic risk. Quarterly Journal of Islamic Finance and Banking Studies, 2(4), 67-92. (In Prsian)
Namaki, A., Raei, R., Asadi, N. & Hajihasani, A. (2019). Analysis of Iran banking sector by multi-layer approach. Iranian Journal of Finance, 3(1), 73-89.
Nazari, N. (2011). Analysis of clusters of companies listed on the Tehran Stock Exchange using the minimum pima tree and the chain tree. Master Thesis in Financial Management, Faculty of Social Sciences and Economics, Al-Zahra University. (In Prsian)
Noor Alidokht, S. (2016). Resistance to default in financial networks. Master Thesis, Faculty of Mathematics and Computer, Zanjan University of Graduate Studies. (In Prsian)
Onnela, J. P., Kaski, K. & Kertész, J. (2004). Clustering and information in correlation based financial networks. The European Physical Journal B, 38(2), 353-362.
Radfar, M. R., Karimkhani, M. & Aligholi, M. (2020). Survey the relationship between bank size and capital with systemic risk in banks accepted in the stock exchange. Journal of Financial Management Strategy, 8(28), 163-176. (In Prsian)
Raei, R., Namaki, A. & Vahabi, H. (2019). Analysis of collective behavior of Iran banking sector by random matrix theory. Iranian Journal of Finance, 3(4), 60-75.
Situngkir, H. & Surya, Y. (2005). On stock market dynamics through ultrametricity of minimum spanning tree. Macroeconomics 0505010, University Library of Munich, Germany.
Tarashev, N. A., Borio, C. E. & Tsatsaronis, K. (2009). The systemic importance of financial institutions. BIS Quarterly Review, 75-87. | ||
آمار تعداد مشاهده مقاله: 1,588 تعداد دریافت فایل اصل مقاله: 619 |