تعداد نشریات | 25 |
تعداد شمارهها | 938 |
تعداد مقالات | 7,708 |
تعداد مشاهده مقاله | 12,649,410 |
تعداد دریافت فایل اصل مقاله | 9,006,950 |
مقاله پژوهشی: اثر وارون اسپین هال و اثر "سیبک" اسپین در دی سولفید تنگستن | ||
فیزیک کاربردی ایران | ||
دوره 12، شماره 4 - شماره پیاپی 31، دی 1401، صفحه 43-61 اصل مقاله (2.08 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22051/ijap.2022.40141.1276 | ||
نویسندگان | ||
فرشید نورعلیشاهی1؛ محمد کاظم سالم* 2؛ محمدرضا تنهایی اهری3 | ||
1دانشجوی دکترا، مرکز تحقیقات پلاسما، دانشگاه آزاد اسلامی واحد علوم و تحقیقات، تهران، ایران | ||
2دانشیار، مرکز تحقیقات پلاسما، دانشگاه آزاد اسلامی واحد علوم و تحقیقات، تهران، ایران | ||
3استاد، گروه فیزیک، دانشکده علوم پایه، واحد تهران مرکز، دانشگاه آزاد اسلامی، تهران، ایران | ||
چکیده | ||
در این مقاله، وابستگی اثر پمپاژ اسپین به لایهای از دی سولفید تنگستن (WS2) با استفاده از اثر وارون اسپین هال (ISHE) بررسی شده است. حرکت تقدیمی بردار مغناطش، اثر پمپاژ اسپین در یک فیلم نارسانای فری مغناطیسی ایجاد میکند. سپس جریانی از الکترونها با اسپین قطبی شده به لایهی NM از یک ماده غیرمغناطیسی، چون پلاتین (Pt)، تزریق میشود. این جریان اسپین با استفاده از روشISHE به جریان الکتریکی تبدیل میشود. در کار حاضر، کارایی تزریق اسپین به دی سولفید تنگستن (WS2) بررسی و دریافت شد که با افزایش ضخامت فیلم، ولتاژ ISHE نیز افزایش مییابد، سپس این رابطه با نظریه مقایسه شد. در مرحله بعد، طول نفوذ اسپین و رسانایی مخلوط اسپین از تغییر ضریب میرایی گیلبرت با ضخامت به دست آمد. با توجه به اطلاعات بدست آمده، بررسیهای مشابهی در موادی چون؛ ایتریوم- آهن- گارنت یا آلیاژ Mo1-xWxS2 انجام شده است. اگرچه در مورد دیسولفید تنگستن بررسیها صورت نگرفته است. لازم به یادآوری است که مطالعاتی چون بررسی اثر جفت شدگی اسپین- مدار، بررسی پراکندگی ریمان مرتبه دوم و همچون آن در مورد دی سولفید تنگستن انجام شده است و همچنان ادامه دارد. امیدواریم کار حاضر بتواند راهنمای مناسبی برای توسعه مطالعات بیشتر دراین زمینه باشد. | ||
کلیدواژهها | ||
اثر هال وارون؛ پمپاژ اسپین؛ میرایی گیلبرت؛ امواج اسپین؛ دی سولفید تنگستن | ||
عنوان مقاله [English] | ||
Research Paper: Inverse Spin Hall Effect and Spin Seebeck Effect in Tungsten Disulfide | ||
نویسندگان [English] | ||
Farshid Nooralishahi1؛ Mohammad Kazem Salem2؛ Mohammad Reza Tanhayi3 | ||
1PhD Stuedent, Plasma Physics Research Center, Science, and Research Branch, Islamic Azad University, Tehran, Iran | ||
2Associate Professor, Plasma Physics Research Center, Science, and Research Branch Islamic Azad University, Tehran, Iran | ||
3Professor, Central Tehran Branch, Islamic Azad University, Tehran, Iran | ||
چکیده [English] | ||
In this paper, the dependence of the spin pumping effect on a layer of tungsten disulfide (WS2) by the inverse Hall spin effect (ISHE) is investigated. The precession motion of the magnetization vector creates the effect of spin pumping on a non-conductive ferrimagnetic film. A stream of polarized spin electrons is then injected into the NM layer of a non-magnetic material such as Pt. This spin current is converted to electric current by the ISHE. We investigated the efficiency of spin injection into tungsten disulfide WS and found that as the film thickness increased, the ISHE voltage also increased and compared this relationship with the theory. Next, we obtained the spin diffusion length and conductivity of the spin mixture by varying the damping coefficient of Gilbert with thickness. As far as we know, similar studies have been performed here on materials such as yttrium-iron-garnet or Mo1-xWxS2 alloy, but not on tungsten disulfide. Studies such as the effect of spin-orbit coupling, the study of second-order Riemann scattering, and the like, have been performed on tungsten disulfide and are still ongoing. We hope this will guide for the development of further studies in this field. | ||
کلیدواژهها [English] | ||
The Inverse Hall Spin Effect (ISHE), Spin Pumping, Gilbert Damping, Spin Waves, Tungsten Disulfide | ||
مراجع | ||
[1] Puebla J., J Kim J., Kondou K., Otani Y., Spintronic devices for energy-efficient data storage and energy harvesting, Communications Materials, 12, 24, 2020. [2] Belkhir L., Elmeligi A., Assessing ICT global emissions footprint: trends to 2040 and recommendations. J. Clean. Prod. 177, 448–463, 2018. [3] Bhatti S., Sbiaa R., Hirohata A., Ohno H., Spintronics based random access memory: a review. Mater. Today, 20, 530–548, 2017. [4] Fathizadeh S., Ziaei J., Akhshani A., Dynamics of Charge Transfer in DNA Wires: A Proton-Coupled Approach, Journal of the Physical Society of Japan, 86(12), 124006, 2017. [5] Hankiewicz E. M., Li J., Jungwirth T., Niu Q., Shen S. Q., and Sinova J., Inverse spin Hall effect in ferromagnetic metal with Rashba spin-orbit coupling, Phys. Rev. B., 72, 155305, 2012. [6] Valenzuela S. O. and Tinkham M., Direct electronic measurement of the spin Hall effect, Nature, 442, 176, 2006. [7] Zhang J. J., Liang F., and Wang J., Inverse spin Hall effect in ferromagnetic metal with Rashba spin-orbit coupling, Eur. Phys. J. B, 72, 105, 2009. [8] Yu R., Miao B. F., L. Sun L., Liu Q., Du J., Omelchenko P., Heinrich B., Wu M., H. F., Determination of spin Hall angle and spin diffusion length in β-phase-dominated tantalum, Phys. Rev. Mater., 2, 074406, 2018. [9] Saitoh E., Ueda M., Miyajima H., Takahashi G., and Maekawa S., Conversion of spin current into charge current at room temperature: Inverse spin- Hall effect, Appl. Phys. Lett., 88, 182509, 2006. [10] Ando K. and Saitoh E. J., Inverse Spin-Hall effect in palladium at room temperature, Appl. Phys., 108, 113925, 2010. [11] Volmer F., Drogeler M., Guntherodt G., Stampfer C., Beschoten B., Spin and charge transport in graphene-based spin transport devices with Co/MgO spin injection and spin detection electrodes., Synth. Metals, 210, 42–55, 2015. [12] Serrano I.G., Panda J., Denoel F., Vallin O., Phuyal D., Karis O., Kamalakar M.V., Two-dimensional flexible high diffusive spin circuits, Nano Lett., 19(2), 666–673, 2019. [13] Dankert A., Dash S.P., Electrical gate control of spin current in van der Waals heterostructures at room temperature, Nat. Commun., 8, 16093, 2017. [14] Singh S., Katoch J., Xu J.S., Tan C., Zhu T.C., Amamou W., Nanosecond spin relaxation times in single layer graphene spin valves with hexagonal boron nitride tunnel barriers, J. Hone, R. Kawakami, Appl. Phys. Lett., 109(12), 122411, 2016. [15] Ane C. L., & Mele E. J., Topological Order and the Quantum Spin Hall Effect, Physical Review Letters, 95, 146802, 2005. [16] Xu L., Yang M., Shen L., Zhou J., Zhu T., Feng Y.P., Large valley splitting in monolayer WS2 by proximity coupling to an insulating antiferromagnetic substrate, Phys. Rev. B, 97(4), 041405, 2018. [17] Harats M. G., Qiao J. N., Kirchhof M., Greben K., Bolotin K. I., Dynamics and Efficient Conversion of Excitons to Tritons in Non-Uniformly Strained Monolayer WS2, Nature Photonics, 14(5), 324–329, 2020. [18] Shao Q., Liu Y., Yu G., Kim S.K., Che X., Tang C., He Q.L., Tserkovnyak Y., Shi J., and Wang K.L., Magnetization switching induced by the magnetic field and electric current in perpendicular TbIG/Pt bilayers, Nat. Electron, 2, 182, 2019. [19] Gilbert M. J., Topological electronics, Communications Physics, 4, 70, 2021. [20] Shalabney A., George J., Pupillo J., Hutchison G., Genet C., Ebbesen T. W., Coherent coupling of molecular resonators with a micro-cavity mode, Nat. Commun., 6, 5981.41, 2015. [21] Puretzky A. A., Lin Y. C., Liu C., Strasser A. M., Yu Y., Canulescu S., Rouleau C. M., Xiao K., Duscher G., Geohegan D. B., In Situ Laser Reflectivity to Monitor and Control the Nucleation and Growth of Atomically thin 2D Materials, 2D MATERIALS, 7 (2), 2020. [22] Wang, Z., Ki, D. K., Chen, H., Berger, H., MacDonald, A. H., & Morpurgo, A. F., Strong interface-induced spin–orbit interaction in graphene on WS2. Nature communications, 6(1), 1-7, 2015. [23] Mitioglu A.A., Plochocka P., Deligeorgis G., Anghel S., Kulyuk L., and Maude D. K.,Second order resonant Raman scattering in single layer tungsten disulfide (WS2), PhysRevB., 89(24), 245442, 2014. [24] Currie M., Hanbicki A. T., Kioseoglou G., Jonker B. T., Optical control of charged exciton states in tungsten disulfide, Appl. Phys. Lett., 106(20), 201907, 2015. [25] Akansel S., Kumar A., Behera N., Husain S., Brucas R., Chaudhary S., Svedlindh P., Thickness-dependent enhancement of damping in Co2FeAl/β-Ta thin films, Phys. Rev. B, 97, 134421, 2018. [26] Amikam A., Introduction to the Theory of Ferromagnetism. Clarendon Press, 978 851791-7,1996. [27] Chikazumi, S., Chikazumi, S., & Graham, C. D., Physics of ferromagnetism (No. 94). Oxford University Press, 1997. [28] Panda S. N., Mondal S., Sinha J., Choudhury S., Baarman A., All-optical detection of interfacial spin transparency from spin pumping in β-Ta/CoFeB thin films, SCI. ADV., 5(4), 7200, 2019. [29] Nakayama H., Ando K., Harii K., Yoshino T., Takahashi R., Kajiwara Y., Uchida K., Fujikawa Y., and Saitoh E., Phys. Rev. B, 85, 144408, 2012. [30] Yuan L., and Huang L., Exciton Dynamics and Annihilation in WS2 2D Semiconductors, Nanoscale, 7, 7402–7408, 2015. [31] Chernikov A., van der Zande A. M., Hill H. M., Rigosi A. F., Velauthapillai A., Hone J., Heinz T. F., Electrical Tuning of Exciton Binding Energies in Monolayer WS2, Physical Review Letters, 115, 126802, 2015. [32] Wang S., Li S., Chervy T., Shalabney A., Azzini S., Orgiu E., Hutchison J. A., Genet C., Samorì P., Ebbesen T. W., Coherent Coupling of WS2 Monolayers with Metallic Photonic Nanostructures at Room Temperature, Nano Lett., 16, 4368–4374, 2016. [33] Chakraborty B., Gu J., Sun Z., Khatoniar M., Bushati R., Boehmke A. L., Koots R., M. Menon V. Von., Strong light-matter interactions: A new direction within chemistry, Nano Letters, 18, 6455-6460, 2018. [34] Soosten M., Dennis. V. Christensen, C. B. Eom, Thomas. S. Jespersen, Y. Chen, N. Pryds, On the Emergence of Conductivity at SrTiO3-Based Oxide Interfaces – an in-Situ Study, Scientific Reports, 9(1), 18005, 2019. [35] Jungfleisch M. B., Chumak A. V., Kehlberger A., Lauer V., Kim D. H., Onbasli M. C., Ross C. A., aui M. K, Hillebrands B., Thickness and power dependence of the spin-pumping effect in Y3Fe5O12/Pt heterostructures measured by the inverse spin Hall effect, Phys. Rev. B, 91,134407, 2015. [36] Baltz V., Manchon A., Tsoi M., Moriyama T., Ono T., and Tserkovnyak Y., Rev. Mod., Antiferromagnetic spintronics, Phys., 90, 015005, 2018. [37] Chubarov M., Choudhury T. H., Hickey D. R., Bachu S., Zhang T., Sebastian A., Bansal A., Zhu H., Trainor N., Das S., Terrones M., Alem N., Redwing J. M., Wafer-Scale Epitaxial Growth of Unidirectional WS2 Monolayers on Sapphire, ACS NANO, 15(2), 2532–2541, 2021. [38] Gurram M., Omar S., Zihlmann S., Makk P., Li Q.C., Zhang Y.F., Schonenberger C., van Wees B.J., Spin transport in two-layer-CVD, Phys. Rev. B, 97(4), 045411, 2018. [39] Gao W., Li X., Bamba M., Kono J., Electrical Tuning of Exciton Binding Energies in Monolayer WS2, Nature Photonics, 12, 362-367, 2018. [40] Liu Z., Murphy A. W. A., Kuppe C., Hooper D. C., Valev V. K., Ilie A., WS2 Nanotubes, 2D Nanomeshes, and 2D In-Plane Films through One Single Chemical Vapor Deposition Route, ACS Nano, 13(4), 3896–3909, 2019. [41] Peto J., Ollar T., Vancso P., Popov Z. I., Magda G. Z., Dobrik G., Hwang C., Sorokin P. B., Tapaszto L., Spontaneous Doping of the Basal Plane of Mo S2 Single Layers through Oxygen Substitution under Ambient Conditions, Nature Chemistry, 10(12), 1246–1251, 2018. [42] Ning S., Huberman S. C., Ding Z., Nahm H. H., Kim Y. H., Kim H. S., Chen G., Ross C. A., Anomalous Defect Dependence of Thermal Conductivity in Epitaxial WO3 Thin Films, Advanced Materials, 31(43), 1903738, 2019. [43] Ghazaryan D., Greenaway M.T., Wang Z., Guarochico-Moreira V.H., Vera-Marun I.J., et al., Magnon-assisted tunneling in van der Waals heterostructures based on CrBr3, Nat. Electron., 1(6), 344–349, 2018. [44] Kurumaji T., Nakajima T., Hirschberger M., Kikkawa A., Ymasaki Y., Sagayama H., Nakao H., Taguchi Y., Arima T., and Tokura Y., Skyrmion lattice with a giant topological Hall effect in a frustrated triangular-lattice magnet, Science, 365, 914, 2019. [45] Liu Y.P., Zhang S.Y., He J., Wang Z.M.M., Liu Z.W., Recent progress in the fabrication, properties, and devices of heterostructures based on 2d materials, Nano-Micro Lett., 11(1), 13, 2019. [46] Leutenantsmeyer J.C., Ingla-Aynes J., Gurram M., van Wees B.J., van Wees, Efficient spin injection into graphene through trilayer hbn tunnel barriers, J., Appl. Phys., 124(19), 194301, 2018. [47] Gurram M., Omar S., van Wees B.J., Bias induced up to 100% spin-injection and detection polarizations in ferromagnet/bilayer-hBN/graphene/hBN heterostructures, Nat. Commun., 8, 248, 2017. [48] Zhang W., Han W., Jiang X., Yang S. H., Parkin S. S. P., Role of transparency of platinum-ferromagnet interface in determining intrinsic magnitude of spin Hall effect, Nat. Phys., 11, 496–502, 2015. [49] Wang Z., Gutierrez-Lezama I., Ubrig N., Kroner M., Gibertini M., et al., Colossal tunneling magnetoresistance in layered magnetic semiconductor Cr I3, Nat Commun., 9, 2516, 2018. [50] Kim H. H., Yang B.W., Patel T., Sfigakis F., Li C.H., Tian S.J., Lei H.C., Tsen A.W., One million percent tunnel magnetoresistance in a magnetic van der Waals heterostructure, Nano Lett., 18(8), 4885–4890, 2018. [51] Song T. C., Cai X.H., Tu M.W.Y., Zhang X.O., Huang B.V., et al., Giant tunneling magnetoresistance in spin-filter van der Waals heterostructures, Science, 360(6394), 1214, 2018. [52] Klein D. R., MacNeill D., Lado J.L., Soriano D., Navarro-Moratalla E., et al., Probing magnetism in 2d van der Waals crystalline insulators via electron Tunneling, Science, 360 (6394), 1218, 2018. [53] Canulescu S., Papadopoulou E. L., Anglos D., Th. Lippert, Schneider C. W., Wokaun A., Mechanisms of the Laser Plume Expansion during the Ablation of , Journal of Applied Physics, 105(6), 128,2009. [54] Sun Q. L., Kioussis N., Prediction of manganese trihalides as two-dimensional Dirac half-metals, Phys. Rev. B, 97(9), 094408, 2018. | ||
آمار تعداد مشاهده مقاله: 656 تعداد دریافت فایل اصل مقاله: 488 |