تعداد نشریات | 25 |
تعداد شمارهها | 938 |
تعداد مقالات | 7,722 |
تعداد مشاهده مقاله | 12,657,424 |
تعداد دریافت فایل اصل مقاله | 9,014,078 |
امواج الکترومغناطیس پلاسمای الکترون- یون و الکترون- پوزیترون- یون غیریکنواخت کوانتومی مغناطیسی در حضور لیزر تب کوتاه | ||
فیزیک کاربردی ایران | ||
دوره 12، شماره 4 - شماره پیاپی 31، دی 1401، صفحه 23-42 اصل مقاله (2.16 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22051/ijap.2022.38853.1256 | ||
نویسندگان | ||
مریم اصغرزاده1؛ حسین زاهد* 2 | ||
1دانشجوی دکترا، گروه فیزیک، دانشکده علوم پایه، دانشگاه صنعتی سهند، تبریز، ایران | ||
2دانشیار، گروه فیزیک، دانشکده علوم پایه، دانشگاه صنعتی سهند، تبریز، ایران | ||
چکیده | ||
امواج الکترومغناطیس مربوط به مغناطوپلاسماهای الکترون- یون و الکترون- پوزیترون- یون غیریکنواخت در اندرکنش با لیزر تب کوتاه در حالت کوانتومی و در تقریب بسامد کوتاه مورد بررسی قرار گرفته است. در این پلاسماها پارامترهای اولیه شامل چگالی عددی، سرعت شارهای و میدان مغناطیسی خارجی در صفحه عمود بر انتشار لیزر به صورت غیریکنواخت میباشند. بررسیها نشان دادهاند که در صفحه عمود بر انتشار تب لیزر افزون بر اینکه مقدار این پارامترها بر سرعت انتشار امواج و میزان ناپایداری آنها مؤثر هستند، بلکه میزان شیب عرضی آنها نیز، به عنوان منبع انرژی، به شدت بر امواج انتشار یافته در این راستا تأثیرگذار است. رفتار امواج در راستای عمود، به ازای تغییر هر یک از شیبهای عرضی بررسی شده است. بررسیها نشان میدهد که رفتار امواج در راستای عمود در دو پلاسمای الکترون- یون و الکترون- پوزیترون- یون متفاوت هستند. در راستای موازی عاملی که بیشترین تأثیر را بر امواج میگذارد، نیروی اثر گذار لیزر است و این تاثیر به صورت مستقیم بر سرعت امواج و میزان ناپایداری آنها است. وابستگی امواج در راستای موازی به کمیتهای اولیه چگالی و سرعت اولیه به صورت مستقیم بوده و وابستگی آنها به میدان مغناطیسی تنها از راه حضور نیروی اثرگذار است. امواج در این جهت تحت تأثیر شیب عرضی کمیت های اولیه قرار نمیگیرند. امواج پلاسما در هر دو پلاسما نیز تحت تأثیر شرایط تصحیح کوانتومی قرار گرفته و سرعت و میزان ناپایداری آنها متأثر از این تصحیحات میباشد. نشان داده شده است که معادلات به دست آمده در کار حاضر در هماهنگی کامل با منابع بیان شده در مقاله است. | ||
کلیدواژهها | ||
موج الکترومغناطیس؛ پلاسمای الکترون- پوزیترون- یون؛ لیزر تب کوتاه؛ مغناطوپلاسما | ||
عنوان مقاله [English] | ||
Electromagnetic Plasma Waves in a Non-uniform Quantum Electron-Ion and Electron-Positron-Ion Magnetoplasmas in the Presence of a Short Pulse Laser | ||
نویسندگان [English] | ||
Maryam Asgharzadeh1؛ Hossein Zahed2 | ||
1PhD Student, Physics Department, Sahand University of Technology, Tabriz, Iran | ||
2Associate Professor, Physics Department, Sahand University of Technology, Tabriz, Iran | ||
چکیده [English] | ||
Electromagnetic plasma waves related to nonuniform electron-ion and electron-positron-ion plasma in interaction with short pulse laser in the quantum state have been investigated. These investigations have been done in low-frequency approximation. In these two plasmas, the initial quantities of number density, streaming velocity, and external magnetic field are inhomogeneous. The investigations have shown that in the perpendicular direction, the amount of these initial quantities affects the wave velocities, their instability rate, and their gradients affect the waves, strongly. The behavior of the perpendicular waves has been analyzed for variation in these initial quantities and the investigations show that these behaviors are different in these two plasmas. In the parallel direction, the factor that most affects the waves is the ponderomotive force related to the laser, so an increase in this force cause to increase in the wave velocities and their instability rate. The dependence of the parallel waves on the initial quantities of the number density and streaming velocity is direct, and their reliance on the external magnetic field is through the ponderomotive force (presence of laser). The waves in this direction are not affected by the transverse gradients of the initial quantities. The plasma waves in both plasmas have also been affected by the quantum correction terms. It has been demonstrated that our resulting equations are in accordance with the references mentioned in the article. | ||
کلیدواژهها [English] | ||
Electromagnetic Wave, Electron- Positron-Ion Plasma, Short Pulse Laser, Magnetoplasma | ||
مراجع | ||
[1] Ress M.J., In: Gbbons W.G, Siklos S., editors. The Very Early Universe. Cambridge: Cambridge University Press; 1993. [2] Ruderman M.A., Shuttherland P.G., Theory of pulsars-Polar caps, sparks, and coherent microwave radiation, Appl. Phys. 196, 51, 1975. [3] Liang E.P., Wilks S.C., Tabak M., Pair Production by Ultraintense Lasers, Phys. Rev. Lett., 81, 4887, 1998; Gahn C., Tsakiris G.D., Pretzler G., et al., Generation positrons with femtosecond-laser pulses, Appl. Phys. Lett., 77, 2662, 2000. [4] Berezhiani V.I., Tskhakaya D.D., Shukla P. K., Pair production in a strong wake field driven by an intense short laser pulse, Phys. Rev. A, 46, 6608, 1992; Marklund M., Shukla P.K., Nonlinear collective effects in photon-photon and photon-plasma interactions, Rev. Mod. Phys., 78, 591, 2006. [5] Helander P., and Ward D.J., Positron Creation and Annihilation in Tokamak Plasmas with Runaway Electrons, Phys. Rev. Lett., 90, 135004, 2003. [6] Mourou G.A., Barty C.P.J., Perry M.D., Ultrahigh-Intensity Lasers: Physics of Extreme on a Tabletop, Phys. Today, 51, 22, 1998. [7] Khan S. A., Ayub M. K., and Ahmad Ali, Low frequency electromagnetic oscillations in dense degenerate electron-positron pair plasma, with and without ions, Physics of plasma,19, 102104, 2012. [8] Trivelpiece A.W., Comments Plasma Phys. Controlled Fusion, 1, 57, 1972. [9] Zank G.P., and Greaves R.G., Linear and nonlinear modes in nonrelativistic electron-positron plasmas, Phy. Rev. E, 51, 6079, 1995. [10] Surko C.M., Levental M., Passner A., Positron Plasma in the Laboratory, Phys.Rev. Lett. 62, 901-904, 1989. [11] Shatashvili N.L., Rao N.N., Localized nonlinear structures of intense electromagnetic waves in two-electron-temperature electron–positron–ion plasmas, Phys. Plasmas, 6, 66-71, 1999. [12] Tsintsatdze L.N., Stability of a charged plane surface of an electron–positron–ion plasma, Physics of Plasma, 11, 4107, 1998. [13] Saleem H., Haque Q., Vranje J., Nonlinear drift waves in electron-positron-ion plasmas, Phys Rev. E, 67, 057402, 2003. [14] Haque Q., Vortex structures in dense electron-positron-ion plasmas. Phys. Scr. 80, 055501, 2009. [15] Tajima T., Taniuti T., Nonlinear interaction of photons and phonons in electron-positron plasmas, Phys. Rev. A, 42, 3587-3602,1990. [16] Chen F.F., Resistive Overstabilities and Anomalous "Diffusion", Phys. Fluids, 8, 912, 1965. [17] Andreev P.A., Spin-electron acoustic waves: The Landau damping and ion contribution in the spectrum, Phys. Plasmas, 23, 062103, 2016. [18] Andreev P.A., Polyakov P.A., Kuz’menkov L.S., on a mechanism of high-temperature superconductivity: Spin-electron acoustic wave as a mechanism for the cooper pair formation, Phys. Plasmas, 24, 102103, 2017. [19] Andreev P.A., Extraordinary SEAWs under influence of the spin-spin interaction and the quantum Bohm potential, Phys. Plasmas, 25, 062114, 2018. [20] Moradi A., Energy behavior of extraordinary waves in magnetized quantum plasmas, Phys. Plasmas, 25, 052123, 2018. [21] Jan Q., Mushtaq A., Ikram M., Non-linear Alfv n waves in spin-1/2 quantum plasma, Phys. Plasmas, 25, 022903, 2018. [22] Jung Y.D., Quantum-mechanical effects on electron-electron scattering in dense high-temperature plasmas, Phys. Plasmas, 8, 3842-3844, 2001. [23] Opher M., Silval L.O., Dauger D.E., Decyk V.K., Dawson J.M., Nuclear reaction rates and energy in stellar plasmas: The effect of highly damped modes, Phys. Plasmas, 8, 2454-2460, 2001. [24] Chabrier G., Douchin F., Potekhin A.Y., Dense astrophysical plasmas, J. Phys. Condense Matter, 14, 9133-9139, 2002. [25] Sentef M., Kampf A.P., Hembacher S., Mannhart J., Focusing quantum state on surfaces: A rout towards the design of ultrasmall electronic devices, Phys. Rev. B, 74, 153407, 2006. [26] Shukla P.K., A new dust mode in quantum plasmas, Phys. Lett. A, 352, 242-243, 2006. [27] Kremp D., Bornath Th., Bonitz M., Schlanges M., Quantum kinetic theory of plasmas in strong laser fields, Phys. Rev. E, 60, 4725-4732, 1999. [28] Andreev P.A., Quantum kinetics of spinning neutral particles: General theory and Spin wave dispersion, Phys. A, 432, 108-126, 2015. [29] Wang Y., Lu X., Eliasson B., Modulational instability of spin modified quantum magnetosonic waves in Fermi-Dirac-Pauli plasmas, Phys. Plasmas, 20, 112115, 2013. [30] Chien T.Y., Chang C.L., Lee C. H., Lin J.Y., Wang J., Chen S.Y., Spatially Localized Self-Injection of Electrons in a Self-Modulated Laser-Wakefield Accelerator by Using Laser-Induced Transient Density Ramp, Phys. Rev. Lett ,94, 115003, 2005. [31] Close D.H., Giuliano C.R., Hellwarth R.W., Hess L.D., McClung F.J., Wagner W.G., The self-focusing of the light of different polarizations, IEEE J Quantum Electron, 2, 553–557, 1966. [32] Esarey E., Sprangle P., Krall J., Ting A., Overview of plasma-based accelerator concepts. IEEE Trans Plasma, Sci PS-24, 252–288, 1996. [33] Landau L., Lifshitz E., Electrodynamics of Continuous Media, 2nd Ed. (Pergamon, Oxford, (1984) Vol. 8 of Course of theoretical physics, pp. 62 and 260. [34] Washimi H., Karpman V., Ponderomotive force of a high-frequency electromagnetic field in a dispersive medium, Sov. Phys. JETP 44, 528, 1976. [35] Pitaevskii L., Electric forces in a transparent dispersive medium, Sov. Phys. JETP, 12, 1008, 1961. [36] Barash Y., Karpman V., Ponderomotive force of a high-frequency field in media with temporal and spatial dispersion, Sov. Phys. JETP, 58, 1139, 1984. [37] Vladimirov S., On electric forces in a time-dependent medium, Phys. Lett. A, 219, 233-237, 1996. [38] Klima R., Petrzilka V., On radiation pressure forces in cold magnetised plasma, J. Phys. A, 11, 1687-1695, 1978. [39] Akama H., Nambu M., Ponderomotive forces for a Vlasov plasma, Phys. Lett. A, 84, 68-70, 1981. [40] Lee N., Parks G., Ponderomotive force in a warm two-fluid plasma, Phys. Fluids, 26, 724, 1983. [41] Ghildyal V., Kalra G., Ponderomotive force in an anisotropic temperature plasma, Phys. Plasmas, 5, 390-394, 1998. [42] Lee N., Parks G., Ponderomotive force in a nonisothermal plasma, Phys. Fluids, 31, 90-94, 1988. [43] D’Ippolito D., Myra J., Quasilinear theory of the ponderomotive force: Induced stability and transport in axisymmetric mirrors, Phys. Fluids, 28, 1895, 1985. [44] Kentwell G., Jones D., The time-dependent ponderomotive force, Phys. Rep, 145, 319-403, 1987. [45] Lehner T., Intense magnetic field generation by relativistic ponderomotive force in an underdense plasma, Phys. Scr, 49, 704-711, 1994. [46] Mora P., Antenson T.M., Kinetic modeling of intense, short laser pulses propagating in tenuous plasmas, Jr. Phys. Plasma, 4, 217-229, 1997. [47] Naghashima K., Kishimoto Y., Takuma H., propagation of a relativistic ultrashort laser pulse in a near-critical-density plasma layer, Phys. Rev. E, 58, 4937-4940, 1998. [48] Andreev A.A., Limpouch J, Ion acceleration in short-pulse laser–target interactions, J. Plasma Phys, 62, 179, 1999. [49] Khachatryan A.G., Trapping, compression, and acceleration of an electron bunch in the nonlinear laser wakefield, Phys. Rev. E, 65, 046504, 2002. [50] Tajima T., Dawson J.M., Laser electron accelerator, Phys. Phys. Rev. Lett., 43, 267–270, 1979. [51] Singh R., Sharma A., Tripathi V.K., Ponderomotive acceleration of electron by a self-focused laser pulse, Phys. Plasmas, 17, 123109, 2010. [52] Sazergari V., Muizale M., Shokui B., Ponderomotive acceleration of electrons in the interaction of arbitrarily-polarized laser pulse with a tenuous plasma, Phys. Plasmas, 13, 033102, 2006. [53] Mora P., Antonsen T.M., Kinetic modeling of intense short laser pulses propagating in tendeous plasmas, Physics of Plasmas 4, 217–229, 1997. [54] Liu C.S., Tripathi V.K., Ponderomotive effect on electron acceleration by plasma wave and betatron resonance and short pulse laser, Phys. Plasmas, 12, 043103, 2005. [55] Shokari B., Khorashady S.M., Pramana M., Oblique modulation of electron-acoustic waves in a Fermi electron–ion plasma, Phys. Plasmas, 61, 1, 2003. [56] Shukla P.K., Dispersive electromagnetic drift modes in non-uniform quantum magneto plasmas, Phys. Plasmas, 13, 082101, 2006. [57] Ali S., Dispersion properties of compressional electromagnetic waves in quantum dusty magnetoplasmas, Phys. Plasmas, 13, 052113, 2006. [58] Liu H., He X.T., Chen S.G., Resonance acceleration of electrons in combined strong magnetic fields and intense laser fields, Phys. Rev. E, 69, 066409, 2004. [59] Shukla P.K., Shukla Nitin, Stenflo L., Generation of magnetic fields by the ponderomotive force of electromagnetic waves in dense plasmas, J. Plasma Physics, 76, 25-28, 2010. [60] Shukla Nitin, Shukla P. K., Eliasson B., and Stenflo L., Magnetization of a quantum plasma by photons, Physics Letters A, 374, 1749-1750, 2010. [61] Shukla P.K., Eliasson B., Formation and Dynamics of Dark Solitons and Vortices in Quantum Electron Plasmas, Phys. Rev. Lett., 96, 245001, 2006. [62] Goldston R.J., Rutherford P.H., Introduction to plasma physics (IoP 1995), p. 365. [63] Moslem W.M., Ali S., Shukla P.K., Eliason B.,Three dimensional electrostatic waves in a nonuniform quantum electron-positron magnetoplasma, Physics Letters A, 372, 3471-3475, 2008. [64] Eliezer Shalom,The Interaction of High Power Lasers with Plasmas, IoP Publishing, Bristol and Philadelphia,69-73, 2002. [65] Djebli Mourad, Dense Electron-Positron Pair Plasma Expansion, Z. Naturforsch,70, 875-880, 2015. [66] shi Yuan, Qin Hong, and Fisch Nathaniel J., Laser-plasma interaction in magnetized environment, Physics of Plasmas, 25, 055706, 2018. [67] Abdikian A., and Mahmood S., Acoustic solitons in a magnetized quantum electron-positron-ion plasma with relativistic degenerate electrons and positrons pressure, Physics of Plasmas, 23, 122303, 2016. [68] El-Taibani W.F., Moslem W.M., Wadati Miki, Shukla P.K., On the instability of electrostatic waves in a nonuniform electron-positron magnetoplasma, Physics Letters A, 372, 4067-4075, 2008. [69] Zheng Peng, Ridgers C.P., and Thomas A.G. R., The effect of nonlinear quantum electrodynamics on relativistic transparency and laser absoption in ultrarelativistic plasma, NewJ. Phys., 17, 043051, 2015. | ||
آمار تعداد مشاهده مقاله: 616 تعداد دریافت فایل اصل مقاله: 525 |