تعداد نشریات | 25 |
تعداد شمارهها | 911 |
تعداد مقالات | 7,489 |
تعداد مشاهده مقاله | 12,105,296 |
تعداد دریافت فایل اصل مقاله | 8,564,036 |
جداسازی و شناسایی باکتریهای اندوفیت ریشه گلرنگ (Carthamus tinctorius) و بررسی تأثیر آنها بر جوانهزنی بذر و رشد گیاه | ||
زیست شناسی کاربردی | ||
دوره 35، شماره 3 - شماره پیاپی 73، آبان 1401، صفحه 143-160 اصل مقاله (723.77 K) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22051/jab.2022.37209.1445 | ||
نویسندگان | ||
شیدا نظرپور1؛ مریم محمدی سیچانی* 2؛ منیره رنجبر3 | ||
1دانشجوی کارشناسی ارشد ، گروه میکروبیولوژی، ,واحد فلاورجان، دانشگاه ازاد اسلامی، اصفهان، ایران | ||
2استادیار ، گروه میکروبیولوژی، واحد فلاورجان، دانشگاه آزاد اسلامی، اصفهان، ایران | ||
3استادیار گروه زیست شناسی، واحد فلاورجان، دانشگاه آزاد اسلامی | ||
چکیده | ||
امروزه باکتری های اندوفیت محرک رشد به عنوان کود زیستی بسیار مورد توجه قرار گرفتهاند. هدف از این مطالعه شناسایی باکتریهای اندوفیت ریشه گیاه گلرنگ و بررسی تأثیر آنها بر جوانهزنی بذر و رشد گیاه بود. سویههای اندوفیتی از ریشه گلرنگ جداسازی شدند و توانایی تولید اکسین و حلکنندگی فسفات آنها مورد ارزیابی قرار گرفت. اثر جدایههای منتخب در دو غلظت 105×5/1 و 108×5/1 باکتری در هر میلیلیتر بر روی جوانهزنی بذر گلرنگ و رشد آن مورد ارزیابی قرار گرفت. همچنین اثر ضدقارچی جدایههای اندوفیتی با روش پورپلیت ارزیابی شد. باکتریهای اندوفیت Micrococcus luteus NMR ، Pseudomonas corrugota NMR ، Pseudomonas fluorescence NMR ، Pseudomonas brassicacearum NMR و Bacillus megaterium NMR از ریشه گلرنگ جدا شدند. در تیمار با سویه Bacillus megaterium NMR ، میانگین بذرهای جوانهزده هنگام تماس با غلظت cfu/ml 105×5/1، نسبت به هنگام تماس با غلظت cfu/ml 108×5/1، بهطور معناداری بیشتر بود. طول ساقهچه و ریشهچه در گروه شاهد نسبت به گروه تیمار به طور معناداری کمتر بود. ارتباط مستقیمی بین مقدار اکسین تولیدی جدایههای اندوفیتی و توانایی حلالیت فسفات آنها با افزایش طول ساقهچه، طول ریشهچه و تعداد بذرهای جوانهزده گلرنگ وجود داشت. ایزوله Pseudomonas brassicacearum NMR هر چهار نوع آنزیم پکتیناز، آمیلاز، پروتئاز و زایلاناز را تولید کرد. نتایج نشان داد ایزوله Pseudomonas fluorescence NMR رشد Aspergillus niger را به میزان 76/30 درصد مهار کرد. باکتریهای اندوفیت جداسازی شده در تحقیق حاضر به دلیل قابلیت تولید اکسین و حلالیت فسفات و تأثیر مستتقیم آنها بر فاکتورهای رشد گلرنگ، به عنوان عوامل محرک رشد پیشنهاد میشوند. | ||
کلیدواژهها | ||
باکتری های محرک رشد؛ ریشه گیاه؛ فعالیت ضدقارچی؛ گلرنگ | ||
عنوان مقاله [English] | ||
Isolation and identification of endophtic bacteria from safflower (Carthamus tinctorius) root and investigating their effect on seed germination and plant growth | ||
نویسندگان [English] | ||
Sheyda Nazarpour1؛ Maryam Mohammadi-Sichani2؛ Monireh Ranjbar3 | ||
1Msc, Department of Microbiology, Falavarjan Branch, Islamic Azad University, Isfahan,, Iran | ||
2Assistant Professor , Department of Microbiology, Falavarjan Branch, Islamic Azad university, Esfahan, Iran | ||
3Assistant Professor , Department of Biology, Falavarjan Branch, Islamic Azad university | ||
چکیده [English] | ||
The growth-promoting endophytic bacteria are highly regarded as bio-fertilizers. The aim of this study was to identify safflower endophytic bacteria and to detect their effects on seed germination and plant growth. Endophytic strains were isolated from safflower roots and their auxin production and phosphate solubility were evaluated. The effects of isolates were evaluated on the safflower seed germination and growth. Then, the activity of enzymes produced by the selected isolates were investigated. The antifungal effects of endophytic isolates were also evaluated by pour plate method. Endophytic bacteria including Micrococcus luteus, Pseudomonas corrugata, Pseudomonas fluorescens, Pseudomonas brassicacearum, and Bacillus megatrium were isolated from safflower roots. In treatment with Bacillus megatrium NMR isolate, the mean of germinated seeds by exposure to the concentration of 105 cfu/ml was significantly higher than concentration of 108 cfu/ml. Coleoptile length and root length in the control group were significantly shorter than the treatment groups. There was a direct relationship between the amount of auxin produced by endophytic isolates and their ability for phosphate solubility with increasing safflower coleoptile and root length, and germinated seeds. Pseudomonas brasicacearum NMR isolate produced all the four enzymes, pectinase, amylase, protease and xylanase. The Pseudomonas fluorescence NMR with the most effectiveness inhibited the growth of Aspergillus niger by 30.76%. The isolated endophytic bacteria in the present study are suggested as stimulants of plant growth in the field due to their ability to produce auxin and to dissolve phosphate and their direct effect on safflower growth factors. | ||
کلیدواژهها [English] | ||
Antifungal effect, Growth-promoting bacteria, Plant root, Safflower | ||
سایر فایل های مرتبط با مقاله
|
||
مراجع | ||
Abdalla, M.A. and McGaw, L.J. (2018) Bioprospecting of South African Plants as a Unique Resource for Bioactive Endophytic Microbes. Frontiers in pharmacology, 9: 456-456. Alikhani, H., Saleh-Rastin, N. and Antoun, H. (2006) Phosphate solubilization activity of rhizobia native to Iranian soils. Plant and Soil, 287(1/2): 35-41. Amore, A., Parameswaran, B., Kumar, R., Birolo, L., Vinciguerra, R., Marcolongo, L., Ionata, E., La Cara, F., Pandey, A. and Faraco, V. (2015) Application of a new xylanase activity from Bacillus amyloliquefaciens XR44A in brewer's spent grain saccharification. Journal of Chemical Technology and Biotechnology, 90(3): 573-581. Bahmani, M., Naghdi, R. and Kartoolinejad, D. (2018) Milkweed seedlings tolerance against water stress: Comparison of inoculations with Rhizophagus irregularis and Pseudomonas putida. Environmental Technology & Innovation, 10: 111-121. Balouiri, M., Sadiki, M. and Ibnsouda, S.K. (2016) Methods for in vitro evaluating antimicrobial activity: A review. Journal of Pharmaceutical Analysis, 6(2): 71-79. Bhange, K., Chaturvedi, V. and Bhatt, R. (2016) Simultaneous production of detergent stable keratinolytic protease, amylase and biosurfactant by Bacillus subtilis PF1 using agro industrial waste. Biotechnology Reports, 10: 94-104. Bolivar-Anillo, H.J., González-Rodríguez, V.E., Cantoral, J.M., García-Sánchez, D., Collado, I.G. and Garrido, C. (2021) Endophytic Bacteria Bacillus subtilis, Isolated from Zea mays, as Potential Biocontrol Agent against Botrytis cinerea. Biology, 10(6): 492. Chakradhari, S., Perkons, I., Mišina, I., Sipeniece, E., Radziejewska-Kubzdela, E., Grygier, A., Rudzińska, M., Patel, K.S., Radzimirska-Graczyk, M. and Górnaś, P. (2020) Profiling of the bioactive components of safflower seeds and seed oil: cultivated (Carthamus tinctorius L.) vs. wild (Carthamus oxyacantha M. Bieb.). European Food Research and Technology, 246(3): 449-459. Christina, A., Christapher, V. and Bhore, S.J. (2013) Endophytic bacteria as a source of novel antibiotics: An overview. Pharmacognosy Reviews, 7(13): 11-16. Dalal, J., Kulkarni, N. and Bodhankar, M. (2014) Antagonistic and plant growth promoting potentials of indigenous endophytic fungi of soybean (Glycine max (L) Merril). Indian Journal of Advances in Plant Research, 7(1): 9-16. Dang, H., Zhang, T., Li, G., Mu, Y., Lv, X., Wang, Z. and Zhuang, L. (2020) Root-associated endophytic bacterial community composition and structure of three medicinal licorices and their changes with the growing year. BMC Microbiology, 20(291): 1-18. Duan, J.L., Li, X.J., Gao, J.M., Wang, D.S., Yan, Y. and Xue, Q.-H. (2013) Isolation and identification of endophytic bacteria from root tissues of Salvia miltiorrhiza Bge. and determination of their bioactivities. Annals of Microbiology, 63(4): 1501-1512. Ek-Ramos, M.J., Gomez-Flores, R., Orozco-Flores, A.A., Rodríguez-Padilla, C., González-Ochoa, G. and Tamez-Guerra, P. (2019) Bioactive Products From Plant-Endophytic Gram-Positive Bacteria. Frontiers in Microbiology, 10(463): 1-12. Fadiji, A.E. and Babalola, O.O. (2020) Elucidating Mechanisms of Endophytes Used in Plant Protection and Other Bioactivities With Multifunctional Prospects. Frontiers in Bioengineering and Biotechnology, 8(467): 1-20. Fouda, A., Eid, A., Elsaied, A., El-Belely, E., Barghoth, M., Azab, E., Gobouri, A. and Hassan, S. (2021) Plant Growth-Promoting Endophytic Bacterial Community Inhabiting the Leaves of Pulicaria incisa (Lam.) DC Inherent to Arid Regions. Plants 10(1): 76. Gamalero, E., Favale, N., Bona, E., Novello, G., Cesaro, P., Massa, N., Glick, B.R., Orozco-Mosqueda, M.d.C., Berta, G. and Lingua, G. (2020) Screening of Bacterial Endophytes Able to Promote Plant Growth and Increase Salinity Tolerance. Applied Sciences , 10(17): 5767. Glickmann, E. and Dessaux, Y. (1995) A critical examination of the specificity of the salkowski reagent for indolic compounds produced by phytopathogenic bacteria. Applied and Environmental Microbiology Journal, 61(2): 793-796. Hardoim, P., van Overbeek, L., Berg, G., Pirttilä, A., Compant, S., Campisano, A., Döring, M. and Sessitsch, A. (2015) The Hidden World within Plants: Ecological and Evolutionary Considerations for Defining Functioning of Microbial Endophytes. Microbiology and Molecular Biology Reviews, 79(3): 293-320. Khan, M.S., Gao, J., Chen, X., Zhang, M., Yang, F., Du, Y., Moe, T.S., Munir, I., Xue, J. and Zhang, X. (2020) Isolation and Characterization of Plant Growth-Promoting Endophytic Bacteria Paenibacillus polymyxa SK1 from Lilium lancifolium. BioMed Research International, 2020: 8650957. Lack, S., Ghooshchi, F. and Hadi, H. (2013) The Effect of Crop Growth Enhancer Bacteria on Yield and Yield Components of Safflower (Carthamus tinctorius L.). International Journal of Farming and Allied Sciences, 2(20): 809-815. Liu, H., Carvalhais, L.C., Crawford, M., Singh, E., Dennis, P.G., Pieterse, C.M. and Schenk, P.M. (2017) Inner Plant Values: Diversity, Colonization and Benefits from Endophytic Bacteria. Microbiology, 8(2552): 1-17. Nahon, C., Lehman, D. and Manuselis, G. (2015) Textbook of Diagnostic Microbiology, Saundera Elsevier. Naserzadeh, Y., Kartoolinejad, D., Mahmoudi, N., Zargar, M., Pakina, E., Heydari, M., Astarkhanova, T. and Kavhiza, N.J. (2018) Nine strains of Pseudomonas fluorescens and P. putida : Effects on growth indices, seed and yield production of Carthamus tinctorius L. Research on crops, 19(4): 622-632. Orozco-Mosqueda, M.d.C., Flores, A., Rojas-Sánchez, B., Urtis-Flores, C.A., Morales-Cedeño, L.R., Valencia-Marin, M.F., Chávez-Avila, S., Rojas-Solis, D. and Santoyo, G. (2021) Plant Growth-Promoting Bacteria as Bioinoculants: Attributes and Challenges for Sustainable Crop Improvement. Agronomy, 11(6): 1167. Pavithra, N., Sathish, L. and Ananda, K. (2012) Antimicrobial and enzyme activity of endophytic fungi isolated from Tulsi. Journal of Pharmaceutical and Biomedical Sciences, 16(12): 1-6. Reyad, A., Radwan, T., Hemida, K., Al-Qasee, N. and Ali, R. (2017) Salt tolerant endophytic bacteria from carthamus tinctorius and their role in plant salt tolerance improvement. International Journal of Current Research, 3(12): 1467-1488. Santoyo, G., Moreno-Hagelsieb, G., del Carmen Orozco-Mosqueda, M. and Glick, B.R. (2016) Plant growth-promoting bacterial endophytes. Microbiology Research, 183: 92-99. Sharma, S.B., Sayyed, R.Z., Trivedi, M.H. and Gobi, T.A. (2013) Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. SpringerPlus, 2: 587-587. Singh, R. and Dubey, A.K. (2018) Diversity and Applications of Endophytic Actinobacteria of Plants in Special and Other Ecological Niches Frontiers in Microbiology, 9(1767): 1-10. Sogandi, S. and Nilasari, P. (2019) Isolation and molecular identification of Endophytic bacteria from Noni fruits (Morinda citrifolia l.) and their antibacterial activity. Earth and environmental sciences, 299: 012020. Suhandono, S., Kusumawardhani, M.K. and Aditiawati, P. (2016) Isolation and Molecular Identification of Endophytic Bacteria From Rambutan Fruits (Nephelium lappaceum L.) Cultivar Binjai. HAYATI Journal of Biosciences, 23(1): 39-44. Sun, L., Wang, X. and Li, Y. (2016) Increased plant growth and copper uptake of host and non-host plants by metal-resistant and plant growth-promoting endophytic bacteria. International Journal of Phytoremediation, 18(5): 494-501. Torres-Rubio, M.G., Valencia-Plata, S.A., Bernal-Castillo, J. and Martínez-Nieto, P. (2000) Isolation of Enterobacteria, Azotobacter sp. and Pseudomonas sp., producers of indole-3-acetic acid and siderophores, from Colombian rice rhizosphere. Revista Latinoamericana de Microbiología, 42: 171-176. Turgumbayeva, A.A., Ustenova, G.O., Yeskalieva, B.K., Ramazanova, B.A., Rahimov, K.D., Aisa, H. and Juszkiewicz, K.T. (2018) Volatile oil composition of Carthamus tinctorius L. flowers grown in Kazakhstan. Annals of Agricultural and Environmental Medicine, 25(1): 87-89. Walitang, D.I., Kim, K., Madhaiyan, M., Kim, Y.K., Kang, Y. and Sa, T. (2017) Characterizing endophytic competence and plant growth promotion of bacterial endophytes inhabiting the seed endosphere of Rice. BMC Microbiology, 17(1): 209. Yousefi , S., Kartoolinejad, D., Bahmani, M. and Naghdi, R. (2017) Salinity tolerance of Dodonaea viscosa L. inoculated with plant growth-promoting rhizobacteria: assessed based on seed germination and seedling growth characteristics. Folia Oecologica, 44(1): 20-27.
| ||
آمار تعداد مشاهده مقاله: 167 تعداد دریافت فایل اصل مقاله: 219 |