تعداد نشریات | 25 |
تعداد شمارهها | 936 |
تعداد مقالات | 7,692 |
تعداد مشاهده مقاله | 12,574,030 |
تعداد دریافت فایل اصل مقاله | 8,944,079 |
Effect of hydrostatic pressure on the Auger recombination rate of InGaN/GaN multiple quantum well laser diode | ||
Journal of Interfaces, Thin Films, and Low dimensional systems | ||
دوره 6، شماره 1، آبان 2022، صفحه 547-558 اصل مقاله (1.26 M) | ||
نوع مقاله: Original Article | ||
شناسه دیجیتال (DOI): 10.22051/jitl.2023.43080.1082 | ||
نویسندگان | ||
Rajab Yahyazade sedghiani* ؛ Zahra Hashempour | ||
Department of Physics, Khoy Branch, Islamic Azad University, Khoy, Iran | ||
چکیده | ||
In this study, a numerical model was used to analyze the Auger recombination rate in c-plane InGaN/GaN multiple-quantum-well lasers(MQWLD) under hydrostatic pressure. Finite difference techniques were employed to acquire energy eigenvalues and their corresponding eigenfunctions of MQWLD, and the hole eigenstates were calculated via a 6×6 k.p method under applied hydrostatic pressure. It was found that a change in pressure up to 10 GPa increases the carrier density up to 0.75×1019 cm-3 and 0.56×1019cm-3 for the holes and electrons, respectively, and the effective band gap. Based on the result, it could decrease the exaction binding energy, rise the electric field rate up to 0.77 MV/cm , and decrease the Auger recombination rate up to 0.6×1027cm3s-1 in the multiple-quantum well regions. Also, calculations demonstrated that the hole-hole-electron (CHHS) and electron-electron-hole (CCCH) Auger recombination rate had the largest contribution to the Auger recombination rate. Our studies provided more detailed insight into the origin of the Auger recombination rate drop under hydrostatic pressure in InGaN-based LEDs. | ||
کلیدواژهها | ||
Auger Recombination؛ Overlap integrals؛ Laser diode؛ Multi-quantum well | ||
عنوان مقاله [English] | ||
تأثیر فشار هیدرواستاتیک بر میزان بازترکیبی اوگر در دیود لیزر با چاه کوانتم چند گانه InGaN/GaN | ||
نویسندگان [English] | ||
رجب یحیی زاده صدقیانی؛ زهرا هاشم پور | ||
گروه فیزیک، دانشگاه آزاد اسلامی واحد خوی، خوی، ایران | ||
چکیده [English] | ||
در این مطالعه، یک مدل عددی برای تجزیه و تحلیل میزان بازترکیبی اوگر در دیود های لیزری با چاه کوانتم چند گانه C-plane InGaN/GaN تحت فشار هیدرواستاتیک استفاده شده است . برای به دست آوردن مقادیر ویژه انرژی و توابع ویژه مربوط به دیود های لیزری از تکنیکهای دیفرانسیل محدود استفاده شد و حالتهای ویژه حفره ها با استفاده از روش6×6 k.p تحت فشار هیدرواستاتیک اعمال شده محاسبه شد ه است . مشخص شد که تغییر فشار تا 10 گیگا پاسکال، چگالی حامل را به ترتیب تا 0.75×10^19 cm-3 و 0.56×10^19cm-3 برای حفرهها و الکترونها و شکاف باند مؤثر را افزایش میدهد. بر اساس نتیجه، میتواند انرژی بستگی اکسایتون را کاهش دهد، نرخ میدان الکتریکی را تا 0.77MV/cm و نرخ نوترکیبی اوگر را به میزان cm^3s^-1 27^10×0.6 ترتیب در نواحی چاههای کوانتومی چندگانه کاهش دهد. همچنین محاسبات نشان داد که سرعت نوترکیبی اوگر حفره-حفره-الکترون (CHHS) و الکترون-الکترون-حفره (CCCH) بیشترین سهم را در نرخ نوترکیبی اوگر داشته است. مطالعات ما بینش دقیق تری را در مورد منشاء افت میزان بازترکیبی اوگر تحت فشار هیدرواستاتیک در دیود های لیزری مبتنی بر InGaN ارائه می کند. | ||
کلیدواژهها [English] | ||
بازترکیبی اوگر, انتگرال های همپوشانی, دیود لیزری, چاه کوانتم چند گانه | ||
مراجع | ||
[1] David, N. G. Young, C. Lund, M. D. Craven, Compensation between radiative and Auger recombinations in III-nitrides: The scaling law of separated-wavefunction recombinations. Appl. Phys. Lett. 115, 193502 (2019).
[2] K. Tan, W. Sun, J. J. WiererJr. N. Tansu, Effect of interface roughness on Auger recombination in semiconductor quantum wells, AIP Advances. 7, 035212 (2017).
[3] Steiauf, E. Kioupakis, C. G. Van de Walle, Auger Recombination in GaAs from First Principles, ACS Photonics, 1, 643−646 (2014).
[4] P. Han, C.H. Oh, D.G. Zheng, H. Kim, J.I. Shim, K. S. Kim, D. S. Shin, Analysis of nonradiative recombination mechanisms and their impacts on the device performance of InGaN/GaN light-emitting diodes, Jpn. J. Appl. Phys.54, 02BA01 (2015).
[5] Liu, C. Haller, Y. Chen, T. Weatherly, J.-F. Carlin, G. Jacopin, R. Butté, and N. Grandjean, Impact of defects on Auger recombination in c-plane InGaN/GaN single quantum well in the efficiency droop regime, Appl. Phys. Lett. 116, 222106 (2020).
[6] Kioupakis, P. Rinke, K. T. Delaney, C. G. Van de Walle, Indirect Auger recombination as a cause of efficiency droop in nitride light-emitting diodes, Appl. Phys. Lett, 98, 161107 (2011).
[7] Piprek, Efficiency droop in nitride-based light-emitting diodes, Phys. Status Solidi A. 207(10), 2217–2225 (2010).
[8] Auf der Maur, G. Moses, J. M. Gordon, X. Huang, Y. Zhao, E. A. Katz, Temperature and intensity dependence of the open-circuit voltage of InGaN/GaN multi-quantum well solar cells, Sol. Energy Mater Sol. Cells, 230 (2021) 111253.
[9] Piprek, F. Römer, B. Witzigmann, On the uncertainty of the Auger recombination coefficient extracted from InGaN/GaN light-emitting diode efficiency droop measurements, Appl. Phys. Lett, 106, 101101 (2015).
[10] -Y. Ryu, G.H. Ryu, C. Onwukaeme, B. Ma, Temperature dependence of the Auger recombination coefficient in InGaN/GaN multiple-quantum-well light-emitting diodes, Opt. Express, 28(19), 27459 (2020).
[11] Cheng, Z. Li, J. Zhang, X. Lin, D. Yang, H. Chen, S. Wu, S. Yao, Advantages of InGaN–GaN–InGaN Delta Barriers for InGaN-Based Laser Diodes, Nanomaterials, 11, 2070 (2021).
[12] Picozzi, R. Asahi, C. B. Geller, A. J. Freeman, Accurate First-Principles Detailed-Balance Determination of Auger Recombination and Impact Ionization Rates in Semiconductors, Phys. Rev. Lett, 89(19), 197601 (2002).
[13] S. Polkovnikov , G. G. Zegrya, Auger recombination in semiconductor quantum wells, Phys. Rev. B, 58(7), 4039-4056 (1998).
[14] Piprek, Efficiency Models for GaN-Based Light-Emitting Diodes: Status and Challenges, Materials, 13, 5174 (2020).
[15] M. McMahon, E. Kioupakis, S. Schulz, Atomistic analysis of Auger recombination in c-plane (In,Ga)N/GaN quantum wells: Temperature-dependent competition between radiative and nonradiative recombination, Phys. Rev. B, 105, 195307 (2022)
[16] Belmabrouk,, B. Chouchen , E. M. Feddi , F. Dujardin , I. Tlili , M. B. Ayed, M.Hichem Gazzah, Modeling the simultaneous effects of thermal and polarization in InGaN/GaN based high electron mobility transistors, Optik, 207 163883 (2020).
[17] X Huang et al, Piezo-Phototronic Effect in a Quantum Well Structure ACS Nano 10(5) 5145 (2016).
[18] K. Ridley, W. J. Schaff, and L. F. Eastman, Theoretical model for polarization superlattices: Energy levels and intersubband transitions, J. Appl. Phys, 94, 3972 (2003).
[19] Ambacher, J. Majewski, C. Miskys, et al, J. Phys. Condens. Matter, 14, 3399 (2002).
[20] Asgari, K. Khalili, Temperature dependence of InGaN/GaN multiple quantum well based high efficiency solar cell, Sol. Energy Mater Sol. Cells, 95, 3124–3129 (2011).
[21] Fiorentini, Evidence for nonlinear macroscopic polarization in III–V nitride alloy heterostructures, Appl. Phys. Lett. 80 1204 (2002).
[22] Perlin, L. Mattos, N. A. Shapiro, J. Kruger, W. S. Wong, T. Sands, Reduction of the energy gap pressure coefficient of GaN due to the constraining presence of the sapphire substrate, J. Appl. Phys. 85 2385 (1999).
[23] J. Bala, A. J. Peter, C. W. Lee, Simultaneous effects of pressure and temperature on the optical transition energies in a Ga 0.7In 0.3N/GaN quantum ring, Chem. Phys. 495, 42–47(2017).
[24] L. Chuang, C. S. Chang, A band-structure model of strained quantum-well wurtzite semiconductors, Semicond. Sci. Technol. 12, 252–263 (1997).
[25] L. Chuang and C. S. Chang, k.p method for strained wurtzite semiconductors, Phys. Rev. B. 54(4), 2491-2504 (1996).
[26] Piprek and S. Nakamura, Physics of high-power InGaN/GaN lasers, IEE Proceedings – Optoelectronics, 149(4), 145–151 (2002).
[27] Yahyazadeh, Numerical Modeling of the Electronic and Electrical Characteristics of MultipleQuantum Well Solar Cells, J. Photonics Energy, 10(4), 045504 (2020).
[28] D. Andrew, E. O. O’Reilly, Theoretical study of Auger recombination in a GaInNAs 1.3 μm quantum well laser structure, Appl. Phys. Lett. 84,182 (2004).
[29] Wang, P. V. Allmen, J.-P. Leburton, K. J. Linden, Auger Recombination in Long- Wavelength Strained-Layer Quantum-Well Structures, IEEE J. Quantum Electron, 31(5), 864-875 (1995).
[30] Asgari, M. Kalafi, L. Faraone, A quasi-two-dimensional charge transport model of AlGaN/GaN high electron mobility transistors (HEMTs), Physica E 28 491–499 (2005).
[31] W.-Ying, Effects of interface roughness on photoluminescence full width at half maximum in GaN/AlGaN quantum wells, Chin. Phys. B 23(11), 117803 (2014).
[32] Yahyazadeh. Effect of hydrostatic pressure on the radiative current density of InGaN/GaN multiple quantum well light emitting diodes. Opt Quant Electron, 53, 571 (2021).
[33] R Yahyazadeh, Z Hashempour, Numerical Modeling of Electronic and Electrical Characteristics of Al Ga N / GaN Multiple Quantum Well Solar Cells, J. Optoelectron. Nanostruct, 5(3), 81 (2020).
[34] H. Ha, S. L. Ban, Binding energies of excitons in a strained wurtzite GaN/AlGaN quantum well influenced by screening and hydrostatic pressure, J. Phys. Condens. Matter. 20, 085218 (2008).
[35] G. Rojas-Briseno, I. Rodriguez-Vargas, M. E. Mora-Ramos, J.C. Martínez-Orozco, “Heavy and light exciton states in c-AlGaN/GaN asymmetric double quantum wells,” Physica E. 124, (2020) 114248.
[36] P Harrison and A Valavanis Quantum Wells, Wires and Dots: Theoretical and Computational Physics of Semiconductor Nanostructures, 4th ed. (New York: John Wiley & Sons) (2016)
[37] Kasapoglu, H. Sari, N Balkan, Binding energy of excitons in symmetric and asymmetric coupled double quantum wells in a uniform magnetic field, Sci. Technol. 15, 219 (2000)
[38] G. Rojas-Briseño, J.C. Martínez-Orozco, M.E. Mora-Ramos, States of direct and indirect excitons in strained zinc-blende GaN/InGaN asymmetric quantum wells, Superlattices Microstruct.112, 574-583 (2017).
[39] Watson-Parris, M. J. Godfrey, P. Dawson, Carrier localization mechanisms in InxGa1−xN/GaN quantum wells, Phys. Rev. B. 83, 115321 (2011).
[40] Chouchen, M. H. Gazzah, A. Bajahzar, H. Belmabrouk, Numerical modeling of InGaN/GaN p-i-n solar cells under temperature and hydrostatic pressure effects, AIP Adv. 9, 045313 (2019).
[41] Jogai, Influence of surface states on the two-dimensional electron gas in AlGaN/GaN heterojunction field-effect transistors, J. Appl. Phys. 93 1631 (2003)
[42] Jogai, Parasitic Hole Channels in AlGaN/GaN Heterojunction Structures, Phys. stat. sol (b), 233 506 (2002).
[43] W. Corzine, L. Coldren, M. Mashanovitch, Diode Lasers and Photonic Integrated Circuits 2nd edn. (New Jersey: John Wiley & Sons) (2012).
[44] P. Agrawal, N. K. Dutta, Semiconductor Lasers, 2nd Edition. (New York: Springer) (1993).
[45] S. Zory, Quantum well lasers (Boston: Academic Press) 62 (1993).
[46] Vurgaftman, J. R Meyer, L. R. R Mohan, Band parameters for III–V compound semiconductors and their alloys, J. Appl. Phys, 89,5815 (2001).
[47] Adachi, Physical Properties of III-V compounds. (New York: John Wiley & Sons (1992).
[48] B. Yekta, H. Kaatuzian, Design considerations to improve high temperature characteristics of 1.3 μm AlGaInAs-InP uncooled multiple quantum well lasers: Strain in barriers, Optik, 122, 514 (2011).
[49] Hader; J.V. Moloney; S.W. Koch, Microscopic evaluation of spontaneous emission- and Auger-processes in semiconductor lasers, IEEE J. Quantum Electron, 41(10), 1217- 1226 (2005).
[50] H. Tan, G. L. Snider, L. D. Chang, E. L. Hu., A self-consistent solution of Schrödinger–Poisson equations using a nonuniform mesh, J. Appl. Phys. 68, 4071 (1990).
[51] L. Ruminates, M. S. Shur, Material properties of nitrides summary,” International Journal of High Speed Electronics and Systems. 14(1),1-19 (2004).
| ||
آمار تعداد مشاهده مقاله: 188 تعداد دریافت فایل اصل مقاله: 208 |