تعداد نشریات | 25 |
تعداد شمارهها | 935 |
تعداد مقالات | 7,692 |
تعداد مشاهده مقاله | 12,568,753 |
تعداد دریافت فایل اصل مقاله | 8,937,872 |
مقالۀ پژوهشی: بررسی بهرهوری سلول خورشیدی پروسکایتی با لایهی فعال معدنی RbGeBr3 و لایههای متفاوت جمع کننده الکترون و حفره | ||
فیزیک کاربردی ایران | ||
دوره 13، شماره 4 - شماره پیاپی 35، دی 1402، صفحه 144-161 اصل مقاله (1.97 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22051/ijap.2023.43433.1318 | ||
نویسندگان | ||
شیما ولی زاده* 1؛ علی اصغر شکری2؛ امیر عباس صبوری دودران3 | ||
1دانشجوی دکتری، گروه فیزیک، دانشگاه پیام نور، تهران، ایران | ||
2استاد، گروه فیزیک نظری و نانو، دانشکده فیزیک، دانشگاه الزهرا، تهران، ایران | ||
3دانشیار، گروه فیزیک، دانشگاه پیام نور، تهران، ایران | ||
چکیده | ||
امروزه سلولهای خورشیدی پروسکایتی (PSCs)، در مقایسه با فناوریهای فتوولتائیک موجود با سرعت قابل توجهی در حال پیشرفت است. درکار حاضر، تمرکز اصلی بر بررسی بهرهوری دو ساختار متفاوتPSCs با لایه فعال پروسکایتی معدنی است. محاسبات مبتنی بر الگوی اپتوالکترونیک سلول خورشیدی و حل معادلات پیوستگی چگالی بار و جریان با روش عددی المان محدود است. به منظور بهینهسازی بهرهوری، ضخامتهای لایه انتقالدهنده الکترون (ETL) و لایه فعال معدنی تغییر داده شده است. نتایج محاسبات شبیهسازی شده برای سلول خورشیدی با ساختار اولFTO/ ITO/ / PEDOT:PSS/ Au، بالاترین بازدهی37/11 % ، با جریان مدار کوتاه (mA/cm^2) 47/14 و ولتاژ مدار باز 96/0 ولت و برای سلول خورشیدی با ساختار دوم FTO/ TiO2/ RbGeBr3/ Spiro-OMETAD/ Au ، بهرهوری57/10% را نشان میدهد. در هر دو ساختار بیان شده، بالاترین بهرهوری با در نظر گرفتن ضخامتها برای لایه انتقالدهنده الکترون 80 نانومتر و لایه فعال معدنی 200 نانومتر است. نتایج این مقاله میتواند در طراحی سلولهای خورشیدی نسل جدید مبتنی بر لایههای پروسکایتی معدنی مفید باشد. | ||
کلیدواژهها | ||
سلولهای خورشیدی پروسکایت؛ فتوولتائیک؛ ضریب جذب؛ بهره وری؛ ماده معدنی | ||
عنوان مقاله [English] | ||
Research Paper: Investigating The Power Conversion Efficiency of Perovskite Solar Cells with The Inorganic Active Layer RbGeBr3 and Various Electron and Hole Collecting Layers | ||
نویسندگان [English] | ||
Shima Valizadeh1؛ Ali Asghar Shokri2؛ Amir Abbas Sabouri Dodaran3 | ||
1PhD Student, Department of Physics, Payam-e Noor University, Tehran, Iran | ||
2Professor, Department of Theoretical Physics and Nano, Faculty of physics, Alzahra University, Tehran, Iran. | ||
3Associate Professor, Department of Physics, Payam-e Noor University, Tehran, Iran. | ||
چکیده [English] | ||
Perovskite solar cells (PSCs) are advancing swiftly due to their remarkable increase in power conversion efficiency (PCE) compared to traditional photovoltaic technologies. The main purpose of this study is to investigate the efficiency of two distinct PSCS structures that use as an inorganic perovskite active layer. The calculations are based on the optoelectronic model of the solar cell and the use of the finite element method to solve the continuity equations for current and charge density. Therefore, the layer thicknesses of different materials (as ETL and Active layer) are modified to find the better power conversion efficiency of these solar cells. The obtained results of simulation calculations illustrate that the first structure FTO/ITO/ /PEDOT: PSS/Au exhibits a maximum power conversion efficiency of 11.37%, with a short circuit current of 14.47 (mA/cm^2) and an open circuit voltage of 0.96 (V) and while the FTO/TiO2/ /Spiro- OMETAD/Au structure shows a maximum power conversion efficiency of 10.57%. The greatest power conversion efficiency for the aforementioned designs is 80 nm for the electron transporting layer is 80 nm and 200 nm for the inorganic active layer, respectively. The results of this article can be useful in the design of new-generation solar cells based on inorganic perovskite layers. | ||
کلیدواژهها [English] | ||
Perovskite Solar Cell, Photovoltaic, Absorption Coefficient, Power Conversion Efficiency, Mineral Material | ||
مراجع | ||
[1] Sum, T. C., Mathews, N., "Advancements in perovskite solar cells: photophysics behind the photovoltaics", Energy & Environmental Science, 7(8), 2518-2534, 2014. [2] Elangovan, N. K., & Arumugam, S., "Chayaver: Indian-traditional dye to modern dye-sensitized solar cells", Materials Research Express, 6(6), 066206, 2019. [3] Al-Ashouri, A., Köhnen, E., Li, B., et al., "Monolithic perovskite/silicon tandem solar cell with> 29% efficiency by enhanced hole extraction", Org, 370(6522), 1300–1309, 2020. https://doi.org/10.1126/science.abd4016 [4] Chung, J., Shin, S., et al., "Record-efficiency flexible perovskite solar cell and module enabled by a porous-planar structure as an electron transport layer", Energy & Environmental Science , 13(12), 4854-4861, 2020. [5] Lee, J., Jin, I., & Jung, J.W., "Binary-mixed organic electron transport layers for planar heterojunction perovskite solar cells with high efficiency and thermal reliability", Chemical Engineering Jornal , 420, 129678, 2021. [6] Yao, H., Zhao, J., et al., "Research and progress of black metastable phase CsPbI 3 solar cells", Materials Chemistry Frontiers, 5(3), 1221-1235, 2021. [7] Chen, S., Xiao, X., Gu, H., et al., "Iodine reduction for reproducible and high-performance perovskite solar cells and modules", Science Advances, 7(10), eabe8130, 2021. https://doi.org/10.1126/SCIADV.ABE8130 [8] Chen, Z., Cheng, Y., et al., "In-situ atmospheric-pressure dielectric barrier discharge plasma treated CH3NH3PbI3 for perovskite solar cells in regular architecture", Applied Surface Science, 437, 468-475, 2019. [9] Li, Z., Gao, Y., et al., "cPCN-Regulated SnO 2 composites enables perovskite solar cell with efficiency beyond 23%", Springer, Nano-micro letters, 13, 1-16, 2021. [10] Wang, H., Dong, Z., Liu, et al., "Roles of Organic Molecules in Inorganic CsPbX3 Perovskite Solar Cells", Advanced Energy Materials, 11(1), 2002940, 2021. https://doi.org/10.1002/AENM.202002940 [11] Pham, H. D., Chien, T., et al., "Development of dopant‐free organic hole transporting materials for perovskite solar cells", Advanced Energy Materials, 10(13), 1903326, 2020. https://doi.org/10.1002/aenm.201903326 [12] Pham, H. D., Om., Wu, Z., et al., "Low‐Cost Alternative High‐Performance Hole‐Transport Material for Perovskite Solar Cells and Its Comparative Study with Conventional SPIRO‐OMeTAD", Advanced Electronic Materials, 3(8), 1700139, 2017. https://doi.org/10.1002/aelm.201700139 [13] Manser, J., & Kamat, P. V., "Band filling with free charge carriers in organometal halide perovskites", Nature Photonic, 8(9), 737-743, 2014. https://doi.org/10.1039/C4TA04994B [14] De Wolf, S., Holovsky, J., et al., "Organometallic halide perovskites: sharp optical absorption edge and its relation to photovoltaic performance", The journal of physical chemistry letters, 5(6), 1035-1039, 2014. [15] Stranks, S. D., Eperon, G. E.,et al., "Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber", Science, 342(6156), 341–344, 2013. https://doi.org/10.1126/SCIENCE.1243982 [16] D’innocenzo, V., Grancini, G.,et al., "Excitons versus free charges in organo-lead tri-halide perovskites", Nature communication, 5(1), 3586, [17] Sahare, S., Pham, H. D.,et al., "Emerging Perovskite Solar Cell Technology: Remedial Actions for the Foremost Challenges", Advanced Energy Materials, 11(42), 2101085, 2021. https://doi.org/10.1002/AENM.202101085 [18] Aharon, S., Dymshits, A., et al., "Temperature dependence of hole conductor free formamidinium lead iodide perovskite based solar cells", Journal of Materials Chemistry A, 3(17), 9171-9178, 2015. [19] Green, M. A., Ho-Baillie, A., & Snaith, H. J., "The emergence of perovskite solar cells", Nature Photonics, 8(7), 506-514 , 2014. https://doi.org/10.1038/NPHOTON.2014.134 [20] Egger, D. A., & Kronik, L., "Role of dispersive interactions in determining structural properties of organic-inorganic halide perovskites: Insights from first-principles calculations", Journal of Physical Chemistry Letters, 5(15), 2728–2733, 2014. https://doi.org/10.1021/JZ5012934 [21] Choi, J., & Billinge, S. J., "Perovskites at the nanoscale: from fundamentals to applications", Nanoscale, 8(12), 6206-6208, 2016. [22] Seo, J., Noh, J. H., & Seok, S. I., "Rational Strategies for Efficient Perovskite Solar Cells", Accounts of Chemical Research, 49(3), 562–572, 2016. https://doi.org/10.1021/ACS.ACCOUNTS.5B00444 [23] Green, M., Dunlop, E., & Yoshita, M., "Solar cell efficiency tables", Progress in photovoltaics: research and applications, 29(1), 3-15, 2014. https://doi.org/10.1038/NPHOTON.2014.134 [24] Stranks, S. D., & Snaith, H. J., "Metal-halide perovskites for photovoltaic and light-emitting devices", Nature Nanothecnology, 10(5), 391-402, [25] Zhang, Y., Chen, S., et al., "Intrinsic instability of the hybrid halide perovskite semiconductor CH3NH3PbI3", Chinese Physics Letters, 35(3), 036104, , 2018. [26] Luo, Y., Xie, F., Chen, J., et al., "Uniform stepped interfacial energy level structure boosts efficiency and stability of CsPbI2Br solar cells", Advanced Functional Materials, 31(34), 2103316, 2021. [27] Ye, T., Wang, X., et al., "Localized electron density engineering for stabilized B-γ CsSnI3-based perovskite solar cells with efficiencies> 10%", ACS Energy Letters, 6(4), 1480-1489, 2021. [28] Chen, L., Lee, C., et al., "Synthesis and optical properties of lead-free cesium tin halide perovskite quantum rods with high-performance solar cell application", The Journal of Physical Chemistry Letters,7(24), 5028-5035, 2016. [29] Kulbak, M., Gupta, S.,et al., "Cesium enhances long-term stability of lead bromide perovskite-based solar cells", The Journal of Physical Chemistry Letters, 7(1), 167-172, [30] Wang, R., Mujahid, M., et al., "A review of perovskites solar cell stability", Advanced Functional Materials, 29(47), 1808843, 2019. https://doi.org/10.1002/adfm.201808843. [31] Akbulatov, A., Luchkin, S., et al., "Probing the intrinsic thermal and photochemical stability of hybrid and inorganic lead halide perovskites", The Journal of Physical Chemistry Letters, 8(6), 1211-1218, 2017. [32] Eperon, G., Paternò, G., et al., "Inorganic caesium lead iodide perovskite solar cells", Journal of Materials Chemistry A, 3(39), 19688-19695, [33] Zeng, Q., Zhang, X., et al., "Inorganic CsPbI2Br Perovskite Solar Cells: The Progress and Perspective", Solar RRL, 3(1), 1800239, 2019. https://doi.org/10.1002/SOLR.201800239 [34] Chang, C. ;, Fang, X. , et al., "Printable CsPbI3 perovskite solar cells with PCE of 19% via an additive strategy", Wiley Online Library, 32(40), 2020. https://doi.org/10.1002/adma.202001243 [35] Yu, Z., Ma, Q., Liu, B., et al., "Oriented tuning the photovoltaic properties of γ-RbGeX3 by strain-induced electron effective mass mutation", Journal of Physics D: Applied Physics, 50(46), 465101, 2017. [36] Elangovan, N. K., & Sivaprakasam, A., "Investigation of parameters affecting the performance of Perovskite solar cells", Molecular Crystals and Liquid Crystals, 710(1), 66–73, 2020. https://doi.org/10.1080/15421406.2020.1829425 [37] Siddiqui, H., "Lead-free perovskite quantum structures towards the efficient solar cell", Materials Letters, 249, 99–103, 2019. https://doi.org/10.1016/J.MATLET.2019.04.051 [38] Azri, F., Meftah, A., Sengouga, N., "Electron and hole transport layers optimization by numerical simulation of a perovskite solar cell", Solar Energy, 181, 372-378, [39] Pandey, R., "Microstructures, Numerical simulations: Toward the design of 27.6% efficient four-terminal semi-transparent perovskite/SiC passivated rear contact silicon tandem solar cell", Superlattices and Microstructures,100, 656-666 , 2016. [40] Minemoto, T., "Device modeling of perovskite solar cells based on structural similarity with thin film inorganic semiconductor solar cells", Journal of Applied Physics, 116(5), 2014. [41] Kavan, L., & Gratzel, M., "Highly efficient semiconducting TiO2 photoelectrodes prepared by aerosol pyrolysis", Electrochemical Acta, 40(5), 643-652, 1995. [42] Agarwal, S., Seetharaman, M., et al., "On the uniqueness of ideality factor and voltage exponent of perovskite-based solar cells", The Journal of Physical Chemistry Letters,, 5(23), 4115–4121, 2014. https://doi.org/10.1021/jz5021636 [43] Kim, H. S., & Park, N. G., "Parameters affecting I-V hysteresis of CH3NH3PbI3 perovskite solar cells: Effects of perovskite crystal size and mesoporous TiO2 layer", Journal of Physical Chemistry Letters, 5(17), 2927–2934, 2014. https://doi.org/10.1021/JZ501392M [44] Snaith, H. J., & Grätzel, M., "Electron and hole transport through mesoporous TiO2 infiltrated with spiro-MeOTAD", Advanced Materials, 19(21), 3643–3647, 2007. https://doi.org/10.1002/ADMA.200602085 [45] Poplavskyy, D., & Nelson, J., "Nondispersive hole transport in amorphous films of methoxy-spirofluorene-arylamine organic compound", Journal of Applied Physics, 93(1), 341-346, 2003. https://doi.org/10.1063/1.1525866 [46] Minemoto, T., & Murata, M., "Impact of work function of back contact of perovskite solar cells without hole transport material analyzed by device simulation", Current Applied Physics,14(11), 1428-1433, 2014. [47] Houari, M., Bouadjemi, B., et al., "Semiconductor behavior of halide perovskites AGeX3 (A = K, Rb and Cs; X = F, Cl and Br): first-principles calculations", Indian Journal of Physics, 94(4), 455–467, 2020. https://doi.org/10.1007/S12648-019-01480-0 [48] Zandi, S., "Finite element simulation of perovskite solar cell: A study on efficiency improvement based on structural and material modification", Solar Energy, 179, 298-306, 2019. [49] Kalogirou S. A.," Solar Energy Engineering: Processes and Systems" - Elsevier, Google Books. Process, Syst,1 st ed. Biritish Library, 1-755, 2009. Retrieved September 3, 2023. | ||
آمار تعداد مشاهده مقاله: 642 تعداد دریافت فایل اصل مقاله: 520 |