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Theoretical research is conducted to determine the mass spectra and wave functions of 
the higher di-molecular type of meson states 𝑋(3872), 𝑌(4140), 𝑍(4430), 𝑋(5568) 
in the Hellmann potential with relativistic effects and corrections. Femtoscopic J/ψ 
bound states have essential concepts in high-energy physics, especially in creating two-
point correlation functions for the hadronic molecule channels that build the 𝑇௖௖  state. 
We analytically calculated the radial part of the Schrödinger equation using the 
transformation to relativistic space using the normal ordering operators. The excited 
states of eigenenergy are obtained. The constituent mass of the di-molecular type of 
mesons was determined, which appears due to relativistic effects. It is informative to 
describe strong interactions and bound state mechanisms using quantum field theory 
ideas and quantum mechanics. In conclusion, we provide advancements in the higher 
meson states mass spectra in the relativistic limit. The results provide satisfaction in 
comparison with experimental data and the work of other researchers. 

1 Introduction 

 In recent years, higher meson states have been 
discovered in the Belle experiment in Japan and the 
BESIII experiment in China at particle accelerators and 
then quickly confirmed by the Collider Detector at 
Fermilab experimental collaboration using proton-
proton collisions at a center-of-mass energy of 7 𝑇𝑒𝑉 
[1], BaBar Collaboration Statement in decays of B 
hadrons at the Tevatron and LHC, and the DꝊ short-
distance phenomena detector. All the higher meson 
states are typically named by their mass, such as 
𝑋(3872). The first new higher state with a mass of 
3871.69𝑀𝑒𝑉, the quantum number 1ାା was 
discovered in 2003. It has a mass of 3872𝑀𝑒𝑉 and has 
been observed in several experiments and can be 

created directly through the high energy strong 
interactions of the colliding quarks and gluons. 
However, after its discovery, the properties of the 
𝑋(3872) exotic meson are still under deep research. It 
decays into an upsilon meson and two charged pions 
incomes via an intermediate 𝐾଴ mesons; hence it is a 
new, excited upsilon meson state. It could be a hadronic 
molecule, which is a weakly-bound charm-meson 
molecule (loosely bound of two mesons as a di-
molecule), or a di-quark and a di-antiquark (tetra-quark 
𝑐𝑐𝑢𝑢). Only 26% of the production rate is observed 
from decays of B hadrons (Fig. 1). Whether these 
molecular suppositions of 𝑋(3872) structure, the 
Collider Detector at Fermilab experimental 
collaboration measured several properties of 𝑋(3872) 
with higher precision than ever before in 2011 and 



Jahanshir/ Journal of Interfaces, Thin films, and Low dimensional systems 6 (2) Winter & Spring (2023) 637-645 
 

   638 
 

continues to make valuable significant contributions to 
clarifying the nature of the new exotic charm states. 

 

 

  

 

Figure 1. X(3872) in different multi quark models 1-meson, 2-
hadronic molecule, 3-tetraquark,  4 hadrocharmonim 

Other examples of new higher hadrocharmonim meson 
states include the 𝑌(4140), the 𝑍(4430), and the 
𝑋(5568)[2-4]. The discovery of these new higher 
meson states has led to new insights into the nature of 
strong force and the behavior of quarks inside multi-
quark hadronic systems. In the previous research, their 
exact characteristic and properties are studied. This is 
while there is too much research in progress to 
understand better higher meson states and their role in 
high-energy interactions. 

 In 2008 the second higher meson state 𝑌(4140),  with 
the mass 4140𝑀𝑒𝑉, was detected at the KEKB by the 
Belle collaboration accelerator in Japan and in 2009 at 
the Fermi National Accelerator Laboratory. It has a 
large decay width, which suggests that it is not an 
arbitrary and formal state. Hence, it presents as a 
hadronic bound state (tetraquark) which is composed of 
𝑐𝑐𝑐𝑐̅ .̅ Physicists called 𝑌(4140) a charmonium-like 
state [5].  The higher meson state with the mass 
4430𝑀𝑒𝑉 and the narrow decay width was first 
observed in 2009 by the collaboration at the Fermilab 
Tevatron particle accelerator and confirmed in 2014 by 
the collaboration at LHCb CERN. It contains quarks 
and gluon which brings us closer to hybrid behaviors. 
Based on its characteristics, the 𝑍(4430) can present as 
a hybrid heavy meson or 𝑐𝑐̅𝑑𝑢ത  with the quantum 
numbers quantum numbers 𝐽௉ = 1ାmaking it a 
tetraquark candidate. Currently, the heaviest meson is 
𝑋(5568). It was found in 2016 at the Fermilab Tevatron 
with a large decay width and mass 𝑜𝑓 5568 𝑀𝑒𝑉 and 

can be understood as a 𝑠𝑢𝑏ത𝑑̅ state. The X(5568)  has 
quantum number 𝐽௉ = 0ି in the scalar state, 𝐽௉ = 1ି in 
the vector state, or 𝐽௉ = 2ା in the tensor state. 

 Theoretical and high energy physicists called this 
higher meson state an exotic hadronic molecule. The 

hadronic molecule is a multiplex particle of more 
hadronic bound states by strong interactions. Hence, 
detecting these higher meson states presents a new 
insight into the properties of quarks in high-energy 
physics. Therefore, the higher meson state is the main 
issue in theoretical and experimental particle physics. 
From 2015 to 2020, researchers at the Large Hadron 
Collider at CERN in Switzerland studied the properties 
of a hadronic molecule, which consists of two mesons. 
The study on the meson characteristics of bound states 
at high energy was based. It decayed into J/ψ bound 
state. Hence, the mass spectrum and eigenenergy of 
these meson states are very significant in describing the 
behavior of hadronic states. The mass spectra of the 
higher meson states can be defined within the 
foundation of the Schrödinger equation in 
nonrelativistic quantum mechanics. In the strong 
interactions, we cannot neglect relativistic effects.  

 Therefore, we can transform the kinetic energy part in 
the Schrödinger equation to the relativistic form that we 
call the semi-relativistic Schrödinger equation. This 
equation gives us a good mathematically relativistic 
correction presentation and description of the higher 
meson states within the Hellman potential 𝑈 (𝑟) =

−
஺భ

௥
+ 𝐴ଶ

௘షഀೝ

௥
 [6]. We try to define the actual 

relativistic corrections to the mass spectra using the 
framework of quantum field theory because of the small 
value of the relativistic effect, i.e., we determine and 
calculate the relativistic corrections to the non-
relativistic interaction potential. The selected potential 
is a type of potential energy used in non-relativistic 
quantum mechanics to describe the behavior of two 
interacting particles with the electric charges (The Breit 
potential type was developed in the 1920s by Gregory 
Breit). This type of potential describes the relativistic 
and electrodynamic behaviors of interacting systems, 
i.e. it determines the spin-spin interactions for the 
effects of corrections in the relativistic limit and the 
electrostatics interactions of particles in bound states. 
The Breit potential is an essential tool for studying the 
behavior of quarks bound states inside the hadrons.  
Therefore, the chosen type of potential and Caswell- 
Lepage idea on the nonrelativistic quantum field theory 
help us to describe these bound states with the 
relativistic corrections on mass spectra. Another idea 
for calculating the mass spectra of hadrons is the 
Caswell-Lepage method. Caswell and Lepage  presented 
an idea in the quantum field theory at a nonrelativistic 

𝑄ഥ 𝑄 

𝑄ഥ 𝑞 
𝑞 𝑄ഥ   

𝑄 𝑞ത 𝑞ത 

𝑄 𝑄ത 
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limit. In this approach, the Lagrangian operator is 
described by expansion in powers of the velocity of the 
constituent particles rather than the coupling constant. 
The Caswell-Lepage idea focused on the system’s 
behavior in the nonrelativistic limit. Constituent 
particles are moving much slower than the speed of 
light, which means that relativistic effects can be 
systematically neglected. By expanding the Lagrangian 
in powers of the particle velocity based on the Caswell-
Lepage formalism, we can derive a set of effective field 
theories that describe the behavior of systems at the 
nonrelativistic limit. Their approach has been 
instrumental in studying the behavior of heavy multi-
quarks states, such as the higher meson states, which are 
fundamental and principal in the study of hadron 
physics and also very practical for predicting the wide 
range of experimental data. Hence, these approaches 
explain the S-matrix and the behavior of the 
interactions. In this research, we study the higher meson 
bound states with rational Feynman path integral in 
quantum field theory. We determine and calculate mass 
spectra and energy eigenvalue using the two intertwined 
spaces within the normal ordering method in quantum 
mechanics. Hence, observations of spin-exotic meson 
behavior and properties of systems like tetraquarks and 
molecular hadronic states can improve precision on 
molecular meson mass, widths, and decay modes, 
evidence for hybrid mesons with excited gluonic 

degrees of freedom. As we know, experimental 
candidates for exotic bound states of two quarks are 
very important. For example, a heavy upsilon particle 
could be a 𝐵∗ 𝐵ത ∗ system, or X(3872) in different multi 
quark models can be as a 1-meson, 2-hadronic 
molecule, 3-tetraquark,  4hadrocharmonim. In 
experiments, we defined more candidates for exotic 
hadronic states. Because of the static approximation for 
some of the quarks’ type, their spin and isospin 
decouple make the pseudoscalar mesons and the vector 
mesons degenerate, while physically they have a very 

small value of separation. We measure wavefunctions 
symmetric under the interchange of the mesons with the 
quark spin and isospin being singlet or triplet; these then 
couple to different combinations. So, in summary, while 
spin and isospin classifications remain foundational, 
ongoing studies continue advancing our understanding 
of meson spectra and interactions within and beyond the 
standard model.  

 The remainder of this research is laid out in the 
following manner: Section 2 introduces the bound state 
formalism in the relativistic limit and quantum field 
theory using the Feynman path integral.  In Section 3 
the normal ordering method to calculate the 
Schrödinger equation and define the mass spectra of the 
higher meson states  

𝑋(3872), 𝑌(4140), 𝑍(4430), 𝑋(5568) 

with relativistic corrections. Finally, Section 4 includes 
concluding remarks.  

2 Relativistic formalism to bound states 

 The mass spectra of the higher meson-bound states 

from the formal transformed (𝐸 → 𝐸 = ඥ𝑝ଶ + 𝑚ଶ) in 

the Schrödinger equation with the mathematical 
calculations is practically impossible. Therefore, the 
most essential issue in theoretical particle research is to 
explain the Einsteinian adjustment of higher meson-
bound states, in order to determine the characteristics of 
relativistic effects within the potential interaction and 
kinetic energy. We present the method based on 
quantum field theory and Feynman path integral to 
calculate the mass spectra of hadrons. As we know, the 
long-range behavior of the propagator function of the 
related currents with the specific quantum numbers can 
determine the mass spectra of hadronic bound states. 
The presentation of the propagator in quantum field 
theory as a functional integral allows us to average over 
the external field. This approach is very close to the 
Feynman functional path integral  in the Schrödinger 
picture in quantum physics, where relativistic effects 
are not considered. By the side of the path integral, the 
Feynman diagram determines the interaction potential 
within the exchange of the mass and the field. The mass 
exchange of component particles describes the 
constituent mass value. i.e., the kinetic term of the total 
Hamiltonian expressed in terms of the constituent mass 
of the component particles in the hadronic systems.  The 
component particle mass (the rest mass) differs from the 
constituent mass. The constituent mass presents the 
relativistic effect of interactions. We show that the 
constituent mass is important for heavy multi-quark 
states, such as higher molecular meson-bound states, 
and is noticeable when compared to the rest mass of the 
constituent meson. We explain the related current of 
charged quarks in the multi-quark hadronic state and 
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represent the propagator in the form of the 
corresponding current by averaging over the field 𝐀  for 
two bounded mesons [7-10]. This defines the kernel 
function of two charged mesons with the same or 
different rest masses. Then we can determine the two-
point function by averaging over the field П(𝑟 − 𝑟 )́ =

〈𝐺௠೎
𝐺௠೎ത

ᇱ 〉𝑨. By the variational method, the two-point 

function presents in the form of path integral, which is 
like Feynman's functional in non-relativistic quantum 
physics. The two-point function and the propagator at 
the limited distant 𝑥 → 0 present the Feynman path 
integral for the motion of particles with masses 𝜇ଵ, 𝜇ଶ in 
the non-relativistic quantum theory with the 𝑊௜,௝ 

potential interactions. These interactions contribute to 
the rescaling quark mass. We have an exchange 
between mesons and field, and the other one with each 
other. The total potential interaction within the 
relativistic corrections reads [7] 

𝑊𝑖,𝑗 =
𝑔2𝑖𝑖+𝑗

2
ඵ 𝑑𝜏1𝑑𝜏2𝑍𝑖 (𝜏1)𝐺 ቀ𝑍𝑖(𝜏1)

− 𝑍𝑗(𝜏2)ቁ 𝑍𝑗(𝜏2)     ,               (1) 

where the functional integral is over the 4-dimensional 

spacetime, 𝐺൫𝑍௜ − 𝑍௝൯ is the propagator of the field 𝐀, 

𝑊ଵ,ଵ, 𝑊ଶ,ଶ is the self-energy of meson interactions, and 

𝑊ଵ,ଶ is the mesons' interaction with the field 𝐀.  If the 

molecular meson mass 𝑚ଵ
 = 𝑚ଶ

 = 𝑚௖
 , then the mass 

spectra of the higher meson bound states are determined 
as follows [7] 

𝑀 = 𝑚𝑖𝑛
ఓ

ቌ
𝑚௖

ଶ
  

 

𝜇௖
+ 𝜇௖ + 𝐸ℓ(𝜇)ቍ ,                     (2) 

where  𝜇 =
ଵ

ଶఓ೎
 , 𝐸ℓ(𝜇) is the eigenenergy of the radial 

Schrödinger equation 𝐻𝑅(𝑟) = 𝐸ℓ(𝜇)𝑅(𝑟), and 𝜇௖ is 
the constituent mass of mesons, which is a relativistic 
correction to the meson rest mass and is determined by  

𝜇𝑐
 = ൭𝑚𝑐

2 − 2𝜇2
𝜕

𝜕𝜇𝑐

𝐸ℓ(μ)൱

1/2

,              (3)  

and otherwise 𝑚ଵ
 ≠ 𝑚ଶ

  the higher meson-bound states 
are determined as [7] 

𝑀 =  𝑚𝑖𝑛
𝜇1,𝜇2

൮
𝑚1

2𝜇2 + 𝑚2
2𝜇1  

 

2𝜇1𝜇2

+
𝜇1+𝜇2

2

+ 𝐸ℓ(𝜇)൲,                            (4) 

and                                                    

𝜇1
 = ቆ𝑚1

2 − 2𝜇2 𝜕

𝜕𝜇1
𝐸ℓ(𝜇)ቇ

1/2

,                                (5)         

𝜇2
 = ൭𝑚2

2 − 2𝜇2
𝜕

𝜕𝜇1

𝐸ℓ(𝜇)൱

1/2

.                             (6) 

As a result, we define the mass spectra of the higher 
molecular meson bound states formalism by 
considering relativistic correction and relativistic 
correction to the interaction term included in the two-
point function П(𝑟 − 𝑟 )́.  

3 The Schrödinger equation in the 
normal ordering form  

 Our start point is creation of the higher 𝑌(4140) meson 
bound state based on the radial Schrödinger equation 
(ℏ = 𝑐 = 1) in 3-dimensional space, which describes 
the interaction of two mesons with the masses 𝑚ଵ= 𝑚ଶ 
in the Hellmann potential 𝑈 (𝑟) = −(𝐴ଵ − 𝐴ଶ)𝑟ିଵ −

𝐴ଶ𝛼  which reads  

൭−
1

2𝜇
൭

𝑑
2

𝑑𝑟2 +
2

𝑟

𝑑

𝑑𝑟
൱ +

ℓ(ℓ + 1)

2𝜇𝑟2  −(𝐴1

− 𝐴2)𝑟−1 − 𝐴2𝛼 

− 𝐸ℓ(𝜇 )ቁ 𝑅(𝑟) = 0,        (7) 

where 𝑚ଵ= 𝑚ଶ = 𝑚௖ , 𝜇ଵ = 𝜇ଶ = 𝜇௖ 
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1

𝜇
=

1

𝜇
1

+
1

𝜇
2

=
2

𝜇
1

→
1

𝜇
=

2

𝜇
𝑐

. 

The Hellmann potential occurs in nature, whereas the 
harmonic oscillator is an approximate model, which 
works for small oscillations, but is inappropriate to use 
to describe anharmonic systems. The Hellmann 
potential is used to study the diatomic molecules and 
might be considered as a potential with behavior 
between exactly solvable harmonic oscillator and 
nonlinear anharmonic models. Based on the oscillator 
representation method [7], we describe this interaction 
and use the harmonic potential as base of a quantum 
system before describing the other potential as 
interaction Hamiltonian. Reference [7] completely 
describes the main idea of the oscillator representation 
method.  

By presenting equation (7) with the new variable  

𝑟 = 𝑞ଶఘ, ρ≻0,  𝑅(𝑟) → 𝜓(𝑞ଶఘ) , 

the Laplacian gives the new form as  

𝛥௤ =
𝑑ଶ

𝑑𝑞ଶ
+

𝒟 − 1

𝑞

𝑑

𝑑𝑞
.                                                   (8) 

By considering 

𝑞ො = ൤
2𝑚𝜔

ℏ
൨

ଵ/ଶ

(𝑎ොା + 𝑎ො ), 

 

𝑝̂௤ = 𝑖 ቂ
𝑚𝜔

2ℏ
ቃ

ଵ/ଶ

(𝑎ොା − 𝑎ො  ),                                            (9) 

 

where 𝑎ොା is the raising operator while 𝑎ොି is the 
lowering operator, in a new axillary space 𝒟 as a form 
of the normal ordering method we then explain the 
Schrödinger equation (Error! Reference source not 
found.) in the form of canonical variables with the 
oscillator frequency 𝜔 of the bound state due to the 
higher 𝑌(4140), the meson bound state is a quantum 
oscillating system [7,11]. In this axillary space, we 
require that the Hamiltonian interaction does not 
contain the quadratic form of 𝑞ොଶ, this is a main 
condition for the normal ordering method in the new 
axillary simplistic 𝒟 space. Using this condition, we 
obtain the oscillator frequency 𝜔. The interaction term 

of Hamiltonian in the new form of the canonical 
operators within the Hellmann potential is obtained as 

𝐻଴𝜓 =
𝑝̂௤

ଶ

2
+ 4𝜇𝜌ଶ𝑞ସఘିଶ൫−(𝐴ଵ − 𝐴ଶ)𝑞ିଶఘ − 𝐴ଶ𝛼𝑞ଶఘ

− 𝐸ℓ(𝜇 )൯𝜓 = 0.                               (10) 

 
Equation (10) is the interaction Hamiltonian without 
relativistic interactions of spin-spin, spin-orbit 
interactions. We can include the interaction between the 
meson’s spins in the 𝑌(4140) meson bound state. 
Therefore, in the modified Schrödinger equation (Eq. 
(Error! Reference source not found.)), we substitute  

𝑝̂ 
ଶ = ඥ𝑝̂ 

ଶ + 𝑚௖
ଶ, and based on Eq. (2)  

one can define 

ඥ𝑝̂ 
ଶ + 𝑚ଶ ≈ min

ఓ

ଵ

ଶ
(𝜇 +

௣ො 
మା௠మ

ఓ
)  

and then for the 𝑌(4140), reads 

ට𝑝̂ 
ଶ + 𝑚௖

ଶ ≈ 𝑚𝑖𝑛
ఓ೎

1

2
ቆ𝜇௖ +

𝑝̂ 
ଶ + 𝑚௖

ଶ

𝜇௖
ቇ.                     (11) 

We represent the modified Schrödinger equation in the 
form of the normal ordering described in Eq. (Error! 
Reference source not found.) and then define the total 
modified Schrödinger equation 
with relativistic spin-spin interactions [12]. The total 
Hamiltonian is  

𝐻 = 𝐻଴ 
+ 𝐻ௌௌ + 𝐻௅ௌ ,   

𝜀𝜓 = (𝐻 − 𝐸ℓ)𝜓 = 0 ,     

𝜀 = 𝜀଴ 
+ 𝜀ௌௌ + 𝜀௅ௌ ,                                                       (12) 

Where 𝐻଴ is the pure Hamiltonian (without spin 
interactions),  𝐻ௌௌ is spin-spin interactions part of the 
Hamiltonian,  𝐻௅ௌ is spin-orbit interactions term of the 
Hamiltonian, and reads  

𝐻଴ =
𝑝̂௤

ଶ

2
+ 4𝜇𝜌ଶ𝑞ସఘିଶ(𝐴ଵ − 𝐴ଶ)𝑟ିଵ − 𝐴ଶ𝛼)

− 4𝜇𝜌ଶ𝑞ସఘିଶ𝐸ℓ(𝜇 ), 

𝐻ௌௌ =
1

12𝜇௖
ଶ

(𝑆ଵ ∙ 𝑆ଶ)∆௤((𝐴ଵ − 𝐴ଶ)𝑞ିଶఘ)

=
1

6𝜇௖
ଶ

(𝑆ଵ ∙ 𝑆ଶ)(𝐴ଵ − 𝐴ଶ)𝑞ି଺ఘ, 
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𝐻௅ௌ =
1

4𝑞ଶఘ ቂ𝑨(𝐿𝑆ା) + 𝑩൫𝐿𝑆ି ൯ 
ቃ 𝛻௤మഐ((𝐴ଵ

− 𝐴ଶ)𝑞ିଶఘ)

=
3

2𝜇௖
ଶ (𝐿𝑆ା)(𝐴ଵ − 𝐴ଶ)𝑞ି଺ఘ, 

where  

𝑨 =
1

𝜇ଵ
ଶ +

1

𝜇ଶ
ଶ +

4

𝜇ଵ
 𝜇ଶ

 , 

 

𝑩 =
1

𝜇ଵ
ଶ −

1

𝜇ଶ
ଶ . 

For the 𝑌(4140) molecular meson-bound state with the 
constituent meson mass  𝜇ଵ

 = 𝜇ଶ
 = 𝜇௖

  and spins 𝑆ଵ, 𝑆ଶ, 
we have 𝑗 = ℓ + 𝑆, 𝑆ା = 𝑆ଵ + 𝑆ଶ, 𝑆ି = 𝑆ଵ − 𝑆ଶ. 𝑆 is 
the eigenvalue of the total spin momentum: 𝑆 = ±2    
for the parallel direction of spins and 𝑆 = 0 for the 
antiparallel direction of spins, 𝑆ଵ, 𝑆ଶ are the eigenvalue 
of the spin moment of each quark, ℓ is the eigenvalue of 
the orbit momentum, and 𝑗 is the eigenvalue of the total 
angular momentum. To take into account the 
contribution of the spin interaction, we need to define 
the spin-spin and spin-orbit scalar products: 

(𝑆ଵ ∙ 𝑆ଶ) =
1

2
(𝑆(𝑆 + 1) − 𝑆ଵ(𝑆ଵ + 1) − 𝑆ଶ(𝑆ଶ + 1)), 

(𝐿𝑆) =
1

2
(𝑗(𝑗 + 1) − 𝑆 (𝑆 + 1) − ℓ(ℓ + 1)). 

Now we determine  𝐸ℓ(𝜇)  and mass spectra of the 
𝑌(4140)  meson bound state using Eqs. (Error! 
Reference source not found.) and (Error! Reference 
source not found.). After some mathematical changes, 
we define 

𝜀𝜓

=
𝐷𝜔

4
− 4𝜇𝜌ଶ𝑞ଶఘିଶ(𝐴ଵ − 𝐴ଶ) − 4𝜇𝜌ଶ𝑞ସఘିଶ𝐴ଶ𝛼

− 4𝜇𝜌ଶ𝑞ସఘିଶ𝐸ℓ(𝜇 ) −
2

3𝜇
𝜌ଶ𝑞ିଶఘିଶ(𝑆ଵ ∙ 𝑆ଶ)(𝐴ଵ

− 𝐴ଶ) +
3

2𝜇 
𝜌ଶ𝑞ିଶఘିଶ(𝐿 ∙ 𝑆ା)(𝐴ଵ

− 𝐴ଶ),                                                                                (13) 

 
and after a little simplification of relations, we define  

𝜀଴ =
𝐷𝜔

4
− 4𝜇𝜌ଶ𝑞ଶ(ఘିଵ)(𝐴ଵ − 𝐴ଶ) − 4𝜇𝜌ଶ𝑞ସఘିଶ𝐴ଶ𝛼

− 4𝜇𝜌ଶ𝑞ସఘିଶ𝐸ℓ(𝜇 ), 

 

𝜀ௌௌ = −
2

3𝜇
𝜌ଶ𝑞ିଶ(ఘାଵ)(𝑆ଵ ∙ 𝑆ଶ)(𝐴ଵ − 𝐴ଶ), 

𝜀𝐿𝑆 =
3

2𝜇 𝜌2𝑞−2(𝜌+1)(𝐿𝑆+)(𝐴
1

− 𝐴2).                              (14) 

Now we can determine 𝜌. The parameter 𝜌 used by the 
variational method is found. This method is a technique 
used for approximating the lowest energy eigenvalue. 
By choosing and finding the values of this parameter for 
which the expectation value of the energy is the lowest 
possible. The minimum eigen energies value of the 
molecular meson-bound state 𝑌(4140) is defined from 
ௗఌబ(ாℓ)

ௗఘ
= 0, and one can approximate the parameter 𝜌 

for the first relation in equation (Error! Reference 
source not found.). The parameter 𝜌 , for quantum 
harmonic systems, is 0 ≺ 𝜌 ≼ 1, and for anharmonic 

quantum systems 2 ≼ 𝜌 ≼ 3. Then by 
ௗఌబ(ா೙ℓ)

ௗఠ
= 0, we 

determine 𝜔. Hence, Eq. (Error! Reference source not 
found.) using 

(𝜌 = 1) 𝑞ଶ =
஽

ଶఠ
 , 𝑞ସ =

஽(஽ାଶ)

ସఠమ , 𝑞ସ =
஽(஽ାଶ)(஽ାସ)

଼ఠయ  reads 

𝜀𝜓

=
𝐷𝜔

4
− 4𝜇(𝐴ଵ − 𝐴ଶ) − 4𝜇𝑞ଶ𝐴ଶ𝛼

− 4𝜇𝑞ଶ𝐸ℓ(𝜇 ) +
𝛴

𝜇
𝑞ିସ,                              (15) 

where  

𝛴 = ൤−
2

3
(𝑆ଵ ∙ 𝑆ଶ) +

3

2 
(𝐿𝑆ା)൨ (𝐴ଵ − 𝐴ଶ). 

Equations 𝜀𝜓 = 0 and 
ௗఌట

ௗఠ
= 0, give us the energy 

eigenvalue of as the 𝑌(4140), the meson-bound state 
within the modified Hellman potential at the relativistic 
limit is  
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𝐸ℓ(𝜇) = −
𝛤(2ℓ)(𝐴ଵ − 𝐴ଶ)𝛴

𝜇ଶ𝛤(2ℓ + 3)
𝜔ଷ

+
(4ℓ + 4) 𝛤(2ℓ + 2) 

16𝜇𝛤(2ℓ + 3)
𝜔ଶ

−
𝛤(2ℓ + 2)(𝐴ଵ − 𝐴ଶ)

𝛤(2ℓ + 3)  

𝜔

− 𝐴ଶ𝛼,                                                (16) 

and the oscillator frequency of the 𝑌(4140) is defined 
as 

3𝛤(2ℓ)(𝐴ଵ − 𝐴ଶ)𝛴

𝛤(2ℓ + 3)
𝜔ଶ −

(4ℓ + 4) 𝛤(2ℓ + 2) 

8𝜇𝛤(2ℓ + 3)
𝜔 

−
𝛤(2ℓ + 2)(𝐴ଵ − 𝐴ଶ)

𝛤(2ℓ + 3)  

= 0,        (17) 

And hence, if we want to use the approximate form of 
the wave function or mass spectrum, we can use the 

values of 𝜌 instead of  
ௗఌబ(ாℓ)

ௗఘ
= 0, and define the higher 

meson bound state for different parameters 𝜌 as follows  

𝜔 = ቆ
(ଷାଶℓ)௰(

య

మ
ାℓ)

ଵଶ(஺భି஺మ)ఀ௰(ℓ)
𝜇ቇ

ଶ

,   𝑖𝑓  𝜌 = 1/2  

𝜔 = ቆ
(଻ା଺ )௰(

ళ

ర
ା

యℓ

మ
)

ହସ(஺భି஺మ)ఀ௰(
యℓ

మ
)

𝜇ቇ

ସ/ଷ

, 𝑖𝑓   𝜌 = 3/4     

Hence, for the minimum energy eigenvalue, the 
parameter 𝜌 was approximated 𝜌 = 1, and the 
oscillatory frequency of higher meson-bound 
states reads  

𝜔 =
(1 + ℓ)𝛤(2ℓ + 2)

12(𝐴ଵ − 𝐴ଶ)𝛴𝛤(2ℓ)
𝜇.                               (18) 

Then, spectra for the radially excited states are defined 
by substituting Eqs. (Error! Reference source not 
found.) and (Error! Reference source not found.) into 
Eq. Error! Reference source not found.) which reads 

𝑀 = 𝑚𝑖𝑛
ఓ

൭
𝑚௖

ଶ
  

 

2𝜇
+ 2𝜇−

(𝐴ଵ − 𝐴ଶ)𝛴

2
𝜔ଷ +

1 

8𝜇
𝜔ଶ

+
(𝐴ଵ − 𝐴ଶ)

2  
𝜔

− 𝐴ଶ𝛼൱.                                             (19) 

Then the constituent mass 𝜇௖of mesons in the higher 
𝑌(4140) bound states and the reduced mass 𝜇 can be 

determined.  According to Eq. (Error! Reference 
source not found.) we have 

𝑑𝐸ℓ(𝜇)

𝑑𝜇

= ቈ൬
(1 + ℓ)𝛤(2ℓ + 2)

24
൰

ଶ 1

2(𝐴ଵ − 𝐴ଶ)Σ𝛤(2𝑙)

− 𝐴ଶ𝛼𝛤(2ℓ

+ 2)቉ ൤
(1 + ℓ)𝛤(2ℓ + 2)

12(𝐴ଵ − 𝐴ଶ)𝛴𝛤(2ℓ)𝛤(3 + 2ℓ)
൨,                (20) 

and then we define the reduced mass  𝜇 = 𝑚௖
 (4 +

2
ௗாℓ(ఓ)

ௗఓ
)ି଴.ହ and the constituent mass of mesons 

𝜇௖ = 𝑚௖
 (1 +

ௗாℓ(ఓ)

ଶௗఓ
)ି଴.ହ

  
 with the rest meson mass 𝑚௖

  

in the higher molecular meson-bound state. Based on 
the diquark–antidiquark picture, we can calculate the 
mass spectra of X(3872), Y(4140), Z(4430), and 
X(5568) with the relativistic correction. We present the 
mass spectra results for 𝑌(4140), in Table 1 for the 
higher molecular meson-bound states with quark 
masses [13] 

ms = 93.4 MeV,       mc = 1.27 GeV, 

meson’s mass [13]  

D*
s =2.112GeV  

and parameters [14] 

A1 =1.58 GeV, A2 =0.243 GeV, α=0.325 GeV. 

and with the quantum number in the triplet 𝑆 = 1 states:  

ℓ  S1 .S2  (LS)  Σ  

1  1/4  1  0.5  

2  1/4  2  1.33  

 

Table 1. Y(4140) mass spectra, the constituent mass of meson, and 
the oscillator frequency in (𝐺𝑒𝑉). 

 𝓵=1 

𝝆 0.5 0.75 1 

𝑴 4.178 4.151 4.147 

𝝁𝒄 2.080 2.108 2.110 
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𝝎 0.862 0.645 0.789 

 𝓵=2 

𝑴 4.299 4.272 4.520 

𝝁𝒄 2.100 2.105 2.097 

𝝎 0.57 1.151 4.423 

4 Conclusions 

 The higher mesons X(3872), Y(4140), Z(4430), 
X(5568) bound states structural properties are 
described. The Schrödinger equation is investigated in 
normal ordering form and transformed into a new 
auxiliary space, which helps us to approximate the mass 
spectra of bound states within the Hellmann potential, 
with relativistic corrections. The framework of quantum 
mechanics, quantum field theory, and quantum 
chromodynamics provided valuable information on 
determining relativistic correction to the mass spectra of 
the higher mesons bound states. The results can open 
new windows for further theoretical and experimental 
investigation in the field of particle physics because of 
the relativistic corrections that we include in 
calculations. In this study, we used mesonic interaction 
to describe and approximate the mass spectra of higher 
molecular mesons bound states in the excited ℓ=1,2 
states within a simplistic 𝐷 -dimension axillary space.  
We defined that the constituent meson masses are not 
free parameters; they  depend on the rest mass and 
reduced mass for each constituent particle. We select 
different values for the parameter 0 ≺ 𝜌 ≼ 1, and based 
on this parameter, we can approximate the wave 
functions of the higher molecular mesons bound states 
with the oscillator frequency 𝜔ఘ =

஽௰(଴.ହ஽ାఘିଵ)

ସ଼ఘమ(஺భି஺మ)ఀ௰(଴.ହ஽ିఘିଵ)
𝜇 of higher meson-bound 

states. The oscillator frequency calculated for 𝑙 = 1, at 
𝜌 = 0.5 is 0.862 GeV, at  𝜌 = 1 is 0.789GeV, and for 
𝑙 = 2 at 𝜌 = 0.5 is 0.57GeV. It presents that the best 
approximation of minimum mass spectra for the first 
and second excited states is at  𝜌 = 1. As we presented 
in Table 1 the constituent mass of 𝑌(4140) increases 
with increasing the excited states. It describes that the 
relativistic correction directly includes the mass spectra 
and mass of the particle in the bound states and the mass 
spectrum of the 𝑌(4140) increase with excited states 

level. The result is in good agreement with the value 
4146.5±4.5+4.6−2.8 MeV [15], the LHCb collaboration 
experimental data, and 4143.0 ± 2.9 ± 1.2 MeV [15] the 
Collider Detector at Fermilab experimental 
collaboration results.  
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