تعداد نشریات | 25 |
تعداد شمارهها | 936 |
تعداد مقالات | 7,692 |
تعداد مشاهده مقاله | 12,576,581 |
تعداد دریافت فایل اصل مقاله | 8,945,612 |
تأثیر روش نگهداری محلول نایل رد بر شدت فلوروسانس در تشخیص لیپیدها | ||
زیست شناسی کاربردی | ||
مقاله 8، دوره 36، شماره 2 - شماره پیاپی 76، شهریور 1402، صفحه 126-140 اصل مقاله (1.52 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22051/jab.2023.41939.1516 | ||
نویسندگان | ||
زهره نوروزی مطلق1؛ محمود اخوان مهدوی* 2؛ رضا قشلاقی2 | ||
1دانشجوی دکتری، گروه مهندسی شیمی، دانشکده مهندسی، دانشگاه فردوسی مشهد، مشهد، ایران | ||
2دانشیار، گروه مهندسی شیمی، دانشکده مهندسی، دانشگاه فردوسی مشهد، مشهد، ایران. | ||
چکیده | ||
نایل رد یک رنگ فلورسنت است که برای تعیین میزان لیپید درون سلولی استفاده میشود. این روش میتواند با دقت بالا مقادیر بسیار کم لیپید درون سلولی را شناسایی کند. اما شدت فلورسانس نایل رد با زمان تغییر میکند و همین مساله استفاده از آن را برای مجموعه آنالیزهایی که در یک فاصله زمانی انجام میشوند با مشکل مواجه میکند. با توجه به اینکه استفاده از محلول نایل رد تازه برای تمام آنالیزها امکان پذیر نیست. پس بایدروشهایی برای حفظ شدت فلورسانس محلول نایل رد باید بکار گرفته شود تا بتوان از این معرف با اطمینان برای آنالیز لیپید استفاده نمود. در این مطالعه شدت فلورسانس محلول نایل رد با توجه به دو عامل زمان و تعداد دفعات ذوب و انجماد بررسی شده است. نتایج نشان داد که شدت فلورسانس محلول نایل رد در اثر انجماد کاهش مییابد. اما اگر محلول منجمد شده تا زمان استفاده منجمد باقی بماند و فقط در هنگام مصرف ذوب شود، میتوان آن را برای مدت طولانی نگهداری کرد و کاهش شدت فلورسانس کمتر از 10درصد خواهد بود. اما اگر به دفعات ذوب و منجمد شود (4 بار یا بیشتر) شدت فلورسانس تا حدود 80 درصد کاهش مییابد که دیگر برای آنالیز مناسب نیست. در صورتی که از معرف منجمد شده (یکبار منجمد شده) استفاده شود برای محدوده غلظت لیپید (روغن زیتون) صفر تا 4 میکروگرم بر میلی لیتر غلظت 0.05میکروگرم بر میلی لیتر از نایل رد مناسب است و لیپید را بدرستی شناسایی و غلظت آن را تعیین میکند. | ||
کلیدواژهها | ||
رنگ نایل رد؛ روغن زیتون؛ فلورسنت | ||
عنوان مقاله [English] | ||
The effect of the storage method of Nile red solution on the fluorescence intensity in lipids detection | ||
نویسندگان [English] | ||
Zohreh Noruzi Motlagh1؛ Mahmood Akhavan Mahdavi2؛ Reza Gheshlaghi2 | ||
1PhD student, Department of Chemical Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran | ||
2Associate Professor, Department of Chemical Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran | ||
چکیده [English] | ||
Nile red is a fluorescent dye that is used to determine the amount of intracellular lipids. This method can detect very low amounts of intracellular lipid with high accuracy. But the intensity of Nile red fluorescence changes with time, and this problem makes it difficult to use it for a set of analyzes that are performed in a time interval. Considering that it is not possible to use fresh Nile red solution for all analyses. So, methods should be used to maintain the fluorescence intensity of Nile red solution so that this reagent can be used reliably for lipid analysis. In this study, the fluorescence intensity of Nile red solution has been investigated according to the two factors of time and the number of times of melting and freezing. The results showed that the fluorescence intensity of Nile red solution decreases due to freezing. But if the frozen solution remains frozen until use and is only melted during use, it can be stored for a long time and the decrease in fluorescence intensity will be less than 10%. But if it is repeatedly thawed and frozen (4 times or more), the fluorescence intensity decreases to about 80%, which is no longer suitable for analysis. If the frozen reagent (once frozen) is used, for 0 to 4 μg/ml of lipid concentration (olive oil) from , 0.05 μg/ml of Nile red concentration is suitable, and the lipid is correctly identified and its concentration is determined. | ||
کلیدواژهها [English] | ||
Fluorescent, Nile red dye, olive oil | ||
سایر فایل های مرتبط با مقاله
|
||
مراجع | ||
Ahmad, I., Sharma, A. K., Daniell, H., & Kumar, S. (2015). Altered lipid composition and enhanced lipid production in green microalga by introduction of brassica diacylglycerol acyltransferase 2. Plant biotechnology journal, 13(4), 540-550. Alemán-Nava, G. S., Cuellar-Bermudez, S. P., Cuaresma, M., Bosma, R., Muylaert, K., Ritmann, B. E., & Parra, R. (2016). How to use Nile Red, a selective fluorescent stain for microalgal neutral lipids. Journal of microbiological methods, 128, 74-79. Bertozzini, E., Galluzzi, L., Penna, A., & Magnani, M. (2011). Application of the standard addition method for the absolute quantification of neutral lipids in microalgae using Nile red. Journal of microbiological methods, 87(1), 17-23. Carman, K. R., Thistle, D., Ertman, S. C., & Foy, M. (1991). Nile red as a probe for lipid-storage products in benthic copepods. Marine Ecology Progress Series, 307-311. Chen, W., Sommerfeld, M., & Hu, Q. (2011). Microwave-assisted Nile red method for in vivo quantification of neutral lipids in microalgae. Bioresource technology, 102(1), 135-141. Chen, W., Zhang, C., Song, L., Sommerfeld, M., & Hu, Q. (2009). A high throughput Nile red method for quantitative measurement of neutral lipids in microalgae. Journal of microbiological methods, 77(1), 41-47. Cooksey, K. E., Guckert, J. B., Williams, S. A., & Callis, P. R. (1987). Fluorometric determination of the neutral lipid content of microalgal cells using Nile Red. Journal of microbiological methods, 6(6), 333-345. Daban, J.-R., Bartolomé, S., & Samsó, M. (1991). Use of the hydrophobic probe Nile red for the fluorescent staining of protein bands in sodium dodecyl sulfate-polyacrylamide gels. Analytical biochemistry, 199(2), 169-174. de la Hunty, M., Spindler, X., Chadwick, S., Lennard, C., & Roux, C. (2014). Synthesis and application of an aqueous nile red microemulsion for the development of fingermarks on porous surfaces. Forensic science international, 244, e48-e55. Doan, T.-T. Y., & Obbard, J. P. (2011). Improved Nile red staining of Nannochloropsis sp. Journal of applied phycology, 23(5), 895-901. Elsey, D., Jameson, D., Raleigh, B., & Cooney, M. J. (2007). Fluorescent measurement of microalgal neutral lipids. Journal of microbiological methods, 68(3), 639-642. Fam, T. K., Klymchenko, A. S., & Collot, M. (2018). Recent advances in fluorescent probes for lipid droplets. Materials, 11(9), 1768. Fernandes, B., Teixeira, J., Dragone, G., Vicente, A. A., Kawano, S., Bišová, K., Přibyl, P., Zachleder, V., & Vítová, M. (2013). Relationship between starch and lipid accumulation induced by nutrient depletion and replenishment in the microalga Parachlorella kessleri. Bioresource technology, 144, 268-274. Gao, Y., Chen, G., & Weselake, R. J. (2014). A rapid Nile red fluorescence-based method for triacylglycerol content in microspore-derived cell suspension cultures of Brassica napus. Lipids, 49(11), 1161-1168. Genicot, G., Leroy, J., Van Soom, A., & Donnay, I. (2005). The use of a fluorescent dye, Nile red, to evaluate the lipid content of single mammalian oocytes. Theriogenology, 63(4), 1181-1194. Greenspan, P., and Fowler, S. D. (1985). Spectrofluorometric studies of the lipid probe, nile red. Journal of lipid research, 26(7), 781-789. Greenspan, P., Mayer, E. P., & Fowler, S. D. (1985). Nile red: a selective fluorescent stain for intracellular lipid droplets. The Journal of cell biology, 100(3), 965-973. Hicks, R. H., Chuck, C. J., Scott, R. J., Leak, D. J., & Henk, D. A. (2019). Comparison of Nile Red and Cell Size Analysis for High‐Throughput Lipid Estimation Within Oleaginous Yeast. European Journal of Lipid Science and Technology, 121(11), 1800355. Huang, G.-H., Chen, G., & Chen, F. (2009). Rapid screening method for lipid production in alga based on Nile red fluorescence. Biomass and bioenergy, 33(10), 1386-1392. Johnson, Z. I., Bidigare, R. R., Blinebry, S. K., Brown, S. L., Cullen, J. J., Loftus, S. E., Redalje, D. G., Swink, C., & Van Mooy, B. A. (2017). Screening for lipids from marine microalgae using nile red. Consequences of microbial interactions with hydrocarbons, oils, and lipids: production of fuels and chemicals, handbook of hydrocarbon and lipid microbiology. Springer International Publishing AG. USA, 88-96. Kimura, K., Yamaoka, M., & Kamisaka, Y. (2004). Rapid estimation of lipids in oleaginous fungi and yeasts using Nile red fluorescence. Journal of microbiological methods, 56(3), 331-338. Kou, Z., Bei, S., Sun, J., & Pan, J. (2013). Fluorescent measurement of lipid content in the model organism Chlamydomonas reinhardtii. Journal of applied phycology, 25(6), 1633-1641. Liang, Y., Sun, Y., Fu, X., Lin, Y., Meng, Z., Meng, Y., Niu, J., Lai, Y., & Sun, Y. (2020). The effect of π-conjugation on the self-assembly of micelles and controlled cargo release. Artificial cells, nanomedicine, and biotechnology, 48(1), 525-532. Madea, D., Martínek, M., Muchova, L., Vana, J., Vitek, L., & Klán, P. (2020). Structural modifications of nile red carbon monoxide fluorescent probe: sensing mechanism and applications. The Journal of organic chemistry, 85(5), 3473-3489. Martinez, V., & Henary, M. (2016). Nile red and Nile blue: applications and syntheses of structural analogues. Chemistry–A European Journal, 22(39), 13764-13782. Montalbo‐Lomboy, M., Kantekin, M. N., & Wang, T. (2014). Lipid Estimation of Surfactant‐Extracted Microalgae Oil Using Nile Red. Journal of the American Oil Chemists' Society, 91(4), 665-680. Natunen, K., Seppälä, J., Schwenk, D., Rischer, H., Spilling, K., & Tamminen, T. (2015). Nile Red staining of phytoplankton neutral lipids: species-specific fluorescence kinetics in various solvents. Journal of applied phycology, 27(3), 1161-1168. Orr, V., & Rehmann, L. (2015). Improvement of the Nile Red fluorescence assay for determination of total lipid content in microalgae independent of chlorophyll content. Journal of applied phycology, 27(6), 2181-2189. Priyanka, P., Kinsella, G. K., Henehan, G. T., & Ryan, B. (2020). Nile Red assay development for the estimation of neutral lipids in Chlorella emersonii and Pseudokirchneriella subcapitata. Rumin, J., Bonnefond, H., Saint-Jean, B., Rouxel, C., Sciandra, A., Bernard, O., Cadoret, J.-P., & Bougaran, G. (2015). The use of fluorescent Nile red and BODIPY for lipid measurement in microalgae. Biotechnology for biofuels, 8(1), 1-16. Satpati, G. G., & Pal, R. (2015). Rapid detection of neutral lipid in green microalgae by flow cytometry in combination with Nile red staining—an improved technique. Annals of Microbiology, 65(2), 937-949. Shi, S., Ji, H., Siewers, V., & Nielsen, J. (2016). Improved production of fatty acids by Saccharomyces cerevisiae through screening a cDNA library from the oleaginous yeast Yarrowia lipolytica. FEMS yeast research, 16(1), fov108. Shim, W. J., Song, Y. K., Hong, S. H., & Jang, M. (2016). Identification and quantification of microplastics using Nile Red staining. Marine pollution bulletin, 113(1-2), 469-476. Sutter, M., Oliveira, S., Sanders, N. N., Lucas, B., van Hoek, A., Hink, M. A., Visser, A. J., De Smedt, S. C., Hennink, W. E., & Jiskoot, W. (2007). Sensitive spectroscopic detection of large and denatured protein aggregates in solution by use of the fluorescent dye Nile red. Journal of fluorescence, 17(2), 181-192. Wase, N., Tu, B., Allen, J. W., Black, P. N., & DiRusso, C. C. (2017). Identification and metabolite profiling of chemical activators of lipid accumulation in green algae. Plant physiology, 174(4), 2146-2165. Wase, N., Tu, B., Black, P. N., & DiRusso, C. C. (2015). Phenotypic screening identifies Brefeldin A/Ascotoxin as an inducer of lipid storage in the algae Chlamydomonas reinhardtii. Algal Research, 11, 74-84. Wong, D. M., Nguyen, T. T., & Franz, A. K. (2014). Ethylenediaminetetraacetic acid (EDTA) enhances intracellular lipid staining with Nile red in microalgae Tetraselmis suecica. Algal research, 5, 158-163. Wu, S., Zhang, B., Huang, A., Huan, L., He, L., Lin, A., Niu, J., & Wang, G. (2014). Detection of intracellular neutral lipid content in the marine microalgae Prorocentrum micans and Phaeodactylum tricornutum using Nile red and BODIPY 505/515. Journal of applied phycology, 26(4), 1659-1668. Zalogin, T. R., & Pick, U. (2014). Azide improves triglyceride yield in microalgae. Algal Research, 3, 8-16.
| ||
آمار تعداد مشاهده مقاله: 117 تعداد دریافت فایل اصل مقاله: 105 |