تعداد نشریات | 25 |
تعداد شمارهها | 936 |
تعداد مقالات | 7,692 |
تعداد مشاهده مقاله | 12,578,493 |
تعداد دریافت فایل اصل مقاله | 8,947,871 |
تولید استرپتوتریسین D توسط Streptomyces sp. جدا شده از ریزوسفر گیاه دارویی Mentha longifolia | ||
زیست شناسی کاربردی | ||
مقاله 4، دوره 37، شماره 4 - شماره پیاپی 82، دی 1403 | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22051/jab.2023.45244.1592 | ||
نویسندگان | ||
فاطمه علی نژاد1؛ غلام خداکرمیان* 2 | ||
1دانشجوی دکتری بیماریشناسی گیاهی، گروه گیاهپزشکی، دانشکده کشاورزی، دانشگاه بوعلی سینا، همدان | ||
2.استاد بیماری شناسی گیاهی، گروه گیاهپزشکی، دانشکده کشاورزی، دانشگاه بوعلی سینا، همدان | ||
چکیده | ||
مقدمه: اکثر آنتیبیوتیکهایی که امروزه استفاده میشوند توسط اکتینومیستها و به ویژه جنسStreptomyces سنتز میشوند و به دلیل پتانسیل بالای آنها برای تولید ترکیبات ضدمیکروبی، این گروه از باکتریها همچنان یک منبع بالقوه برای شناسایی ترکیبات جدید هستند. به دلیل تاثیر ریزفاکتورهای محیطی بر جوامع میکروبی و بیان ژنهای آنها از جمله ژنهای سنتزکننده ترکیبات ثانویه و ترکیبات ضدمیکروبی، جداسازی Streptomyces ها از زیستگاههای منحصر به فرد با هدف شناسایی ترکیبات جدید، میتواند مفید باشد. به نظر میرسد ریزوسفر گیاهان دارویی سنتی میتواند یک محیط غنی برای جداسازی و شناسایی Streptomyces ها و ترکیبات جدید باشد. در این مطالعه به بررسی فعالیت ضدمیکروبی جدایههایStreptomyces جمعآوریشده از ریزوسفر گیاهان دارویی بومی استان همدان علیه باکتریهای گرم مثبت و گرم منفی پرداخته شد. روشها: جدایههای مختلفStreptomyces از ریزوسفر گیاهان دارویی منطقه آورزمان در استان همدان جمع آوری شدند و فعالیت ضدمیکروبی آنها علیه چند باکتری گرم مثبت و گرم منفی با استفاده از آزمونهای زیستسنجی انجام شد. آنالیز متابولومیکس عصارههای استخراج شده از کشتمایع جدایههای فعال جهت شناسایی ترکیبات ضدمیکروبی با استفاده از دستگاه ESI-MS انجام شد. نتایج و بحث: بر اساس آزمونهای زیستسنجی جدایه Streptomyces sp. 3Z جدا شده از ریزوسفر Mentha longifolia فعالیت ضدمیکروبی قوی در تقابل با تعدادی از باکتریهای گرم مثبت وگرم منفی نشان داد. آنالیز متابولومیکس فرکشن فعال بهدستآمده از عصاره استخراجی از کشت مایع این جدایه، تولید Streptothricin D توسط این جدایه را تایید کرد. | ||
کلیدواژهها | ||
Streptomyces؛ آنتی&lrm؛ بیوتیک؛ استرپتوتریسین؛ ریزوسفر؛ طیف سنجی جرمی؛ فعالیت ضد باکتریایی | ||
عنوان مقاله [English] | ||
Production of streptothricin D by a rhizospheric Streptomyces sp. isolated from the medicinal plant Mentha longifolia | ||
نویسندگان [English] | ||
fatemeh alinejad1؛ Gholam Khodakaramian2 | ||
1PhD student in Plant Pathology, Department of Phytomedicine, Faculty of Agriculture, Bu-Ali Sina University, Hamadan | ||
2Professor of Plant Pathology, Department of Phytomedicine, Faculty of Agriculture, Bu-Ali Sina University, Hamadan | ||
چکیده [English] | ||
Introduction: The majority of antibiotics that are used today are produced by actinomycetes, especially the genus of Streptomyces. Because of the high potential of Streptomyces species to produce antimicrobial compounds, these bacteria are still an interesting source for identifying new antimicrobial compounds. Due to the influence of environmental micro factors on microbial communities and their gene expression, including the synthesis of secondary and antimicrobial compounds, it is valuable to isolate Streptomyces from unique environments for identifying new compounds. The rhizosphere of wild traditional medicinal plants appears to be a promising environment for the isolation and identification of Streptomyces, as well as the discovery of new compounds... In this study, we investigated the antimicrobial activity of Streptomyces isolates collected from the rhizosphere of native medicinal plants in Hamedan province against Gram-positive and Gram-negative bacteria. Methods: Different isolates of Streptomyces were collected from the rhizosphere of medicinal plants in the Averzaman region in Hamedan province, and their antimicrobial activity against Gram-positive and Gram-negative bacteria was investigated using bioassay tests. Metabolomics analysis of the extracts obtained from the liquid culture of the active isolates was performed using ESI-MS to identify active compounds corresponding to the observed bioactivities. Results and Discussion: Based on bioassay tests, the Streptomyces sp. 3Z isolated from the rhizosphere of Mentha longifolia exhibited strong antimicrobial activity against Gram-positive and Gram-negative bacteria. Metabolomics analysis of the active fraction of the crude extract of this isolate confirmed the production of Streptothricin D by this isolate. | ||
کلیدواژهها [English] | ||
Streptomyces, Antibiotic, Streptothricin, Antibacterial activity, Rhizosphere, Mass spectrometry | ||
مراجع | ||
Aminov, R.I. (2009). The role of antibiotics and antibiotic resistance in nature. Environmental Microbiology, 11 (12): 2970–2988. Atanasov, A.G., Zotchev, S.B., Dirsch, V.M. (2021). International Natural Product Sciences Taskforce, Supuran CT. Natural products in drug discovery: advances and opportunities. Nature Reviews Drug Discovery, 20 (3): 200–216. Barka, E.A., Vatsa, P., Sanchez, L., Gaveau-Vaillant, N., Jacquard, C., Klenk, H.P., Clément, C., Ouhdouch, Y. and Wezeld, G.P.V. (2015). Taxonomy, physiology, and natural products of Actinobacteria. American Society for Microbiology, 80 (1): 1–43. Bauer, A., Kirby, W.M., Sherris, J., Turck, M. (1966). Antibiotic susceptibility testing by a standardized single disk method. American Journal of Clinical Pathology, 45 (4): 493–496. Bekiesch, P., Zehl, M., Domingo-Contreras, E., Martín, J., Pérez-Victoria, I., Reyes, F., Kaplan, A., Rückert, C., Busche, T., Kalinowski, J., Zotchev, B.Z. (2020). Viennamycins: Lipopeptides Produced by a Streptomyces sp. Journal of Natural Products, 83 (8): 2381–2389. Challis, G.L. (2008). Mining microbial genomes for new natural products and biosynthetic pathways. Microbiology, 154 (6): 1555–1569. De Lima Procópio, R.E., da Silva, I.R., Martins, M.K., de Azevedo, J.L., de Araújo, J.M. (2012). Antibiotics produced by Streptomyces. Brazilian Journal of Infectious Diseases, 16 (5): 466–471. Dennis, P.G., Miller, A.J., Hirsch, P.R. (2010). Are root exudates more important than other sources of rhizodeposits in structuring rhizosphere bacterial communities? FEMS Microbiology Ecology 72 (3): 313–327. Edwards, U., Rogall, T., Blocker, H., Emde, M., Bottger, E.C. (1989). Isolation and Direct Complete Nucleotide Determination of Entire Genes. Characterization of a gene coding for 16S ribosomal RNA. Nucleic Acids Research, 17 (19): 7843–7853. Farda, B., Djebaili, R., Vaccarelli, I., Del Gallo, M., Pellegrini, M. (2022). Actinomycetes from Caves: An Overview of Their Diversity, Biotechnological Properties, and Insights for Their Use in Soil Environments. Microorganisms, 10 (2): 453. Goodfellow, M. and Williams, S.T. (1983). Ecology of actinomycetes. Annual Review of Microbiology, 37: 189–216. Hamano, Y., Matsuura, N., Kitamura, M., Takagi, H. (2006). A novel enzyme conferring streptothricin resistance alters the toxicity of streptothricin D from broad-spectrum to bacteria-specific. Journal of Biological Chemistry, 281 (25): 16842–16848. Haupt, I., Jonak, J., Rychlik, I., Thrum, H. (1980). Action of streptothricin F on ribosomal functions. Journal of Antibiotics, 33 (6): 636–641. Ian, E., Malko, D.B., Sekurova, O.N., Bredholt, H., Ruckert, C., Borisova, M.E., Albersmeier, A., Kalinowski, J., Gelfand, M.S., Zotchev, S.B. (2014). Genomics of sponge-associated Streptomyces spp. closely related to Streptomyces albus J1074: insights into marine adaptation and secondary metabolite biosynthesis potential. PLoS ONE, 9 (5): e96719. Ji, Z., Wei, S., Zhang, J., Wu, W., Wang, M. (2008). Identification of Streptothricin Class Antibiotics in the Earlystage of Antibiotics Screening by Electrospray Ionization Mass Spectrometry. Journal of Antibiotics, 61 (11): 660–667. Ji, Z., Wang, M., Zhang, J., Wei, S., Wu, W. (2007). Two New Members of Streptothricin Class Antibiotics from Streptomyces qinlingensis sp. Nov. Journal of Antibiotics, 60 (12): 739–744. Kibret, M., Guerrero-Garzón, J.F., Urban, E., Zehl, M., Wronski, V.K., Rückert, C., Busche, T., Kalinowski, J., Rollinger, J.M., Abate, D., Zotchev, S.B. (2018). Streptomyces spp. From Ethiopia producing antimicrobial compounds: Characterization via bioassays, genome analyses, and mass spectrometry. Frontiers in Microbiology, 9: 1270. Kusumoto, S., Kambayashi, Y., Imaoka, S., Shima, K., Shiba, T. (1982). Total chemical structure of streptothricin. Journal of Antibiotics, 35 (7): 925–927. Lemos, M.L., Toranzo, A.E., Barja, J.L. (1385) Antibiotic activity of epiphytic bacteria isolated from intertidal seaweeds. Microbial Ecology, 11 (2): 149–163. Oberhofer, M., Hess, J., Leutgeb, M., Gössnitzer, F., Rattei, T., Wawrosch, C., Zotchev, B.Z. (2019). Exploring Actinobacteria Associated With Rhizosphere and Endosphere of the Native Alpine Medicinal Plant Leontopodium nivale Subspecies alpinum. Frontiers in Microbiology, 10: 2531. Okada, B.K., Seyedsayamdost, M.R. (2017). Antibiotic dialogues: Induction of silent biosynthetic gene clusters by exogenous small molecules. FEMS Microbiology Reviews, 41(1): 19–33. Penn, K., Jenkins, C., Nett, M., Udwary, D.W., Gontang, E.A., McGlinchey, R.P., Foster, B., Lapidus, A., Podell, S., Allen, E.E., Moore, B.S., Jensen, P.R. (2009). Genomic islands link secondary metabolism to functional adaptation in marine Actinobacteria. ISME Journal, 3 (10): 1193–1203. Rajeswari, P., Jose, P.A., Amiya, R., Jebakumar, S.R.D. (2015). Characterization of saltern based Streptomyces sp. and statistical media optimization for its improved antibacterial activity. Frontiers in Microbiology, 5: 753. Rutledge, P.J. and Challis, G.L. (2015). Discovery of microbial natural products by activation of silent biosynthetic gene clusters. Nature Reviews Microbiology, 13 (8): 509–523. Schlatter, D., Fubuh, A., Xiao, K., Hernandez, D., Hobbie, S., Kinkel, L. (2009). Resource Amendments Influence Density and Competitive Phenotypes of Streptomyces in Soil. Microbial Ecology, 57 (3): 413–420. Seong, C.N., Choi, J.H., Baik, K.S. (2001). An Improved Selective Isolation of Rare Actinomycetes from Forest Soil. Journal of Microbiology, 39 (1): 17–23. Shirling, E.B. and Gottlieb, D. (1966). Methods for characterization of Streptomyces species. International Journal of Systematic Bacteriology, 16 (3): 313–340. Van Tamelen, E.E., Dyer, J.R., Whaley, H.A., Carter, H.E., Whitfield, G.B. (1961). Constitution of the streptolin-streptothricin group of Streptomyces antibiotics. Journal of the American Chemical Society, 83 (20): 4295–4296. Wang, Y., Yang, D., Yu, Z. (2023). New Lactones Produced by Streptomyces sp. SN5431 and Their Antifungal Activity against Bipolaris maydis. Microorganisms, 11 (3): 616 | ||
آمار تعداد مشاهده مقاله: 157 |