تعداد نشریات | 25 |
تعداد شمارهها | 938 |
تعداد مقالات | 7,708 |
تعداد مشاهده مقاله | 12,651,182 |
تعداد دریافت فایل اصل مقاله | 9,009,082 |
تاثیرمحلولپاشی نانوذره اکسید تیتانیوم و اکسید روی بر کاهش اثرات تنش شوری در گیاه بابونه (Matricaria chamomilla) | ||
زیست شناسی کاربردی | ||
مقاله 8، دوره 36، شماره 3 - شماره پیاپی 77، آذر 1402، صفحه 86-101 اصل مقاله (1.1 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22051/jab.2023.43648.1568 | ||
نویسندگان | ||
لمیا وجودی مهربانی* 1؛ ایرج عزتمند2؛ علی عبدل زاده فرد3 | ||
1دانشیار، گروه بیوتکنولوژی کشاورزی، دانشکده کشاورزی، دانشگاه شهید مدنی آذربایجان، تبریز، ایران. | ||
2دانشجوی کارشناسی ارشد گیاهان دارویی، گروه زراعت و اصلاح نباتات، دانشکده کشاورزی، دانشگاه شهید مدنی آذربایجان. تبریز، ایران | ||
3دانشجوی کارشناسی ارشد بیوتکنولوژی کشاورزی، دانشکده کشاورزی، دانشگاه شهید مدنی آذربایجان. تبریز، ایران | ||
چکیده | ||
مقدمه: تنش شوری یکی از مهمترین تنشهای غیرزیستی است که رشد گیاه را تحت تاثیر قرار میدهد. هدف از این مطالعه، بررسی تأثیر تنش کلریدسدیم (0، 75 و 150 میلیمولار) و محلولپاشی نانوذرههای اکسیدتیتانیوم و اکسیدروی (0، 2 و 4 میلیگرم در لیتر) بر رشد و برخی صفات فیزیولوژیکی و بیوشیمیایی بابونه (Matricaria chamomilla) بود. روشها: تنش شوری در مرحله 3-4 برگی گیاه، در کشت هیدروپونیک اعمال شد و محلولپاشی با نانوذرات همزمان با اعمال تنش شوری انجام شد. 38 روز بعد از دومین محلولپاشی، گیاهان، برای مطالعه صفات مورد نظر برداشت شدند. نتایج و بحث: بیشترین وزنخشک گل در تنش شوری صفر با محلولپاشی هر دو سطح نانوذرههای اکسیدروی و تیتانیوم مشاهده شد. محلولپاشی هردو سطح نانوذرههای اکسیدروی و تیتانیوم در تنش شوری صفر و محلولپاشی 4 میلیگرم در لیتر نانوذره اکسیدروی در تنش شوری 75 میلیمولار موجب افزایش محتوای کلروفیل a (20 تا 50 درصدی) شد. تنش شوری 150 میلیمولار موجب افزایش محتوای مالون دیآلدئید و پرولین شد. نتایج نشان داد که محلولپاشی با نانوذرهها موجب بهبود محتوای عناصر، کلروفیل، عملکرد و پروتئین گیاه در شرایط تنش صفر و 75 میلیمولار کلریدسدیم شد. | ||
کلیدواژهها | ||
پرولین؛ کلروفیل؛ مالون دیآلدئید؛ محتوای عناصر | ||
عنوان مقاله [English] | ||
Nano-titanium oxide and nano zinc oxide foliar application ameliorates the salinity stress effects on Matricaria chamomilla | ||
نویسندگان [English] | ||
وجودی مهربانی Vojodi Mehrbani1؛ Iraj Ezzatmand2؛ Ali Abdolzadehfard3 | ||
1Associate Professor, Department of Medicinal Plants, Agriculture and Plant Breeding, Shahid Madani University of Azerbaijan, Tabriz, Iran | ||
2M.Sc. student of Medicinal Plants, Department of Agronomy and Plant Breeding, Azarbaijan Shahid Madani University, Tabriz, Iran | ||
3M.Sc. Student of Agricultural Biotechnology, Azarbaijan Shahid Madani University, Tabriz, Iran | ||
چکیده [English] | ||
Introduction: Salinity stress is one of the most important abiotic stresses in the world that influence the plant growth and productivity. The aim of this study was to investigate the effects of salinity stress (0, 75 and 150 mM) and foliar application of nano TiO2 and ZnO (0, 2 and 4 mg L-1)on the growth and some physiological and biochemical traits of Matricaria chamomilla. Methods: Salinity stress was applied in 3-4 leaf stage of plant under hydroponic conditions. The foliar spraying with nanoparticle was done simultaneously with the initiation of salinity stress. 38 days after second foliar treatment, the plants were harvested to study the desired traits. Results and discussion: The highest flower dry weight was obtained in the NaCl0 × both concentrations of nano ZnO and TiO2. The highest concentration of chlorophyll a (20-50 %) was obtained in NaCl0 × both levels of ZnO and TiO2 nanoparticles and NaCl75mM × 4 mgL-1 nano ZnO. 150 mM salinity increased malondialdehyde and proline content in plant. The results showed that the foliar treatment of TiO2 and ZnO nanoparticles improved elemental content, yield and protein content of the plant under no-salinity, and 75 mM NaCl salinity conditions. | ||
کلیدواژهها [English] | ||
Chlorophyll, Elemental content, Malondialdehyde, Proline | ||
مراجع | ||
[1] Lim, T. K. (2014). Matricaria chamomilla. In Edible medicinal and non-medicinal plantslower (pp. 397–431). Dordrecht: Springer Netherlands. https://doi.org/10.1007/978-94-007-7395-0_25 [2] dos Santos, D. S., de Souza Siqueira Barreto, R., Serafini, M. R., Gouveia, D. N., Marques, R. S., de Carvalho Nascimento, L., … & Guimarães, A. G. (2019). Phytomedicines containing matricaria species for the treatment of skin diseases: a biotechnological approach. Fitoterapia, 138, 104267. https://www.sciencedirect.com/science/article/pii/S0367326X19309669 [3] El Mihyaoui, A., da Silva, J. C. G., Charfi, S., Candela Castillo, M. E., Lamarti, A., & Arnao, M. B. (2022). Chamomile (Matricaria chamomilla L.): a review of ethnomedicinal use, phytochemistry and pharmacological uses. Life, 12(4). https://www.mdpi.com/2075-1729/12/4/479 [4] Karami, A., & Sepehri, A. (2018). Nano titanium dioxide and nitric oxide alleviate salt induced changes in seedling growth, physiological and photosynthesis attributes of barley. Zemdirbyste-agriculture, 105(2). https://pdfs.semanticscholar.org/64b1/1227d6f4f1ec13acb86680bfb382beb8a1ff.pdf [5] Fatehi, S. F., Oraei, M., Gohari, G., Akbari, A., & Faramarzi, A. (2022). Proline-functionalized graphene oxide nanoparticles (Go–Pro Nps) mitigate salt-induced adverse effects on morpho-physiological traits and essential oils constituents in moldavian balm (dracocephalum moldavica L.). Journal of plant growth regulation, 41(7), 2818–2832. https://doi.org/10.1007/s00344-021-10477-1 [6] Ganjavi, A. S., Oraei, M., Gohari, G., Akbari, A., & Faramarzi, A. (2021). Glycine betaine functionalized graphene oxide as a new engineering nanoparticle lessens salt stress impacts in sweet basil (ocimum basilicum L.). Plant physiology and biochemistry, 162, 14–26. https://www.sciencedirect.com/science/article/pii/S0981942821000954 [7] Munns, R., & Tester, M. (2008). Mechanisms of salinity tolerance. Annual review of plant biology, 59(Volume 59, 2008), 651–681. https://www.annualreviews.org/content/journals/10.1146/annurev.arplant.59.032607.092911 [8] Mehrabani, L. V., Hassanpouraghdam, M. B., & Shamsi-Khotab, T. (2018). The effects of common and nano-zinc foliar application on the alleviation of salinity stress in Rosmarinus officinalis L. ACTA scientiarum polonorum hortorum cultus, 17(6), 65–73. https://czasopisma.up.lublin.pl/index.php/asphc/article/view/61 [9] Esmaielpour, B., Shiekhalipour, M., & Torabi-Giglo, M. (2020). Effects of zinc nanoparticles on growth, some physiological characteristics, and essential oil yield of dracocephalum moldavica L. under salinity stress conditions. Iranian journal of medicinal and aromatic plants research, 36(5), 867-884. (In Persian). https://ijmapr.areeo.ac.ir/article_122921.html [10] Dadkhah, A. R., & others. (2010). Effect of salt stress on growth and essential oil of Matricaria chamomilla. Research journal of biological sciences, 5(10), 643–646. [11] El-Saadony, M. T., ALmoshadak, A. S., Shafi, M. E., Albaqami, N. M., Saad, A. M., El-Tahan, A. M., … & Helmy, A. M. (2021). Vital roles of sustainable nano-fertilizers in improving plant quality and quantity-an updated review. Saudi journal of biological sciences, 28(12), 7349–7359. https://www.sciencedirect.com/science/article/pii/S1319562X2100718X [12] Farooq, T., Adeel, M., He, Z., Umar, M., Shakoor, N., da Silva, W., … & Rui, Y. (2021). Nanotechnology and plant viruses: an emerging disease management approach for resistant pathogens. ACS nano, 15(4), 6030–6037. https://doi.org/10.1021/acsnano.0c10910 [13] Abdel Latef, A. A. H., Srivastava, A. K., El-sadek, M. S. A., Kordrostami, M., & Tran, L. S. P. (2018). Titanium dioxide nanoparticles improve growth and enhance tolerance of broad bean plants under saline soil conditions. Land degradation & development, 29(4), 1065–1073. https://onlinelibrary.wiley.com/doi/abs/10.1002/ldr.2780 [14] Daughan, H. I. (2018). Effects of TiO2 nanoparticles on maize (Zea mays L.) growth, chlorophyll content and nutrient uptake. Applied ecology and environmental research, 16, 6873–6883. [15] Chattha, M. U., Amjad, T., Khan, I., Nawaz, M., Ali, M., Chattha, M. B., … & others. (2022). Mulberry based zinc nano-particles mitigate salinity induced toxic effects and improve the grain yield and zinc bio-fortification of wheat by improving antioxidant activities, photosynthetic performance, and accumulation of osmolytes and hormones. Frontiers in plant science, 13, 1-16. https://www.frontiersin.org/articles/10.3389/fpls.2022.920570/full [16] Dimkpa, C. O., McLean, J. E., Latta, D. E., Manangón, E., Britt, D. W., Johnson, W. P., … & Anderson, A. J. (2012). Cuo and Zno nanoparticles: phytotoxicity, metal speciation, and induction of oxidative stress in sand-grown wheat. Journal of nanoparticle research, 14(9), 1125. https://doi.org/10.1007/s11051-012-1125-9 [17] Mehrabani, L. V., Valizadeh Kamran, R., Hassanpouraghdam, M. B., & Pessarakli, M. (2017). Zinc sulfate foliar application effects on some physiological characteristics and phenolic and essential oil contents of lavandula stoechas L. under sodium chloride (NACL) salinity conditions. Communications in soil science and plant analysis, 48(16), 1860–1867. https://doi.org/10.1080/00103624.2017.1406105 [18] Shinano, T., Lei, T. T., Kawamukai, T., Inoue, M. T., Koike, T., & Tadano, T. (1996). Dimethylsulfoxide method for the extraction of chlorophylls a and b from the leaves of wheat, field bean, dwarf bamboo, and OAK. Photosynthetica, 32(3), 409–415. [19] Luhova, L., Lebeda, A., Hedererová, D., & Pec, P. (2003). Activities of amine oxidase, peroxidase and catalase in seedlings of pisum sativum L. under different light conditions. Plant soil and environment, 49(4), 151–157. [20] Nareshkumar, A., Veeranagamallaiah, G., Pandurangaiah, M., Kiranmai, K., Amaranathareddy, V., Lokesh, U., … & Sudhakar, C. (2015). Pb-stress induced oxidative stress caused alterations in antioxidant efficacy in two groundnut (arachis hypogaea L.) cultivars. Agricultural sciences, 6(10), 1283–1297. [21] Heath, R. L., & Packer, L. (1968). Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Archives of biochemistry and biophysics, 125(1), 189–198. https://www.sciencedirect.com/science/article/pii/0003986168906541 [22] Fedina, I., Georgieva, K., Velitchkova, M., & Grigorova, I. (2006). Effect of pretreatment of barley seedlings with different salts on the level of UV-B induced and UV-B absorbing compounds. Environmental and experimental botany, 56(3), 225–230. https://www.sciencedirect.com/science/article/pii/S0098847205000353 [23] Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical biochemistry, 72(1), 248–254. https://www.sciencedirect.com/science/article/pii/0003269776905273 [24] Zhang, D., & Hamauzu, Y. (2004). Phenolics, ascorbic acid, carotenoids and antioxidant activity of broccoli and their changes during conventional and microwave cooking. Food chemistry, 88(4), 503–509. https://www.sciencedirect.com/science/article/pii/S0308814604001517 [25] Parida, A. K., & Das, A. B. (2004). Effects of NaCl stress on nitrogen and phosphorous metabolism in a true mangrove Bruguiera parviflora grown under hydroponic culture. Journal of plant physiology, 161(8), 921–928. https://www.sciencedirect.com/science/article/pii/S017616170400015X [26] Ashraf, M., Shahzad, Sh. M., Imtiaz, M., & Rizwan, M. Sh. (2018). Salinity effects on nitrogen metabolism in plants – focusing on the activities of nitrogen metabolizing enzymes: a review. Journal of plant nutrition, 41(8), 1065–1081. https://doi.org/10.1080/01904167.2018.1431670 [27] Garg, N., Saroy, K., Cheema, A., & Bisht, A. (2019). Microbial diversity in soil: biological tools for abiotic stress management in plants. Plant biotic interactions : state of the art (pp. 283–321). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-26657-8_17 [28] Amooaghaie, R., Majidi, M., & Farhadian, S. (2022). Impact of nano-TiO2 on salt stress tolerance of carum copticum. Plant process and function, 11(48). http://jispp.iut.ac.ir/article-1-1560-en.html [29] Behnam, H., Feizi, H., & Alipanah, M. (2021). Alleviation the effects of salinity stress using titanium dioxide nano and bulk particles in Echinacea seeds and seedlings. Advances in horticultural science, 35(4), 351–360. [30] Kamali, M., Shour, M., & Feizi, H. (2018). Impacts of nanosized and bulk titanium dioxide on flowering and morpho-physiological traits of petunia (petunia hybrida) under salinity stress. Journal of horticultural science, 32(2), 199-212. (In Persian). https://jhs.um.ac.ir/article_36490.html [31] Marschner, H. (1995). Mineral nutrition of higher plants. Elsevier Science. https://www.google.com/books/edition/Marschner_s_Mineral_Nutrition_of_Higher/yqKV3USG41cC?hl=en&gbpv=0 [32] Parihar, P., Singh, S., Singh, R., Singh, V. P., & Prasad, S. M. (2015). Effect of salinity stress on plants and its tolerance strategies: a review. Environmental science and pollution research, 22(6), 4056–4075. https://doi.org/10.1007/s11356-014-3739-1 [33] Drkażkiewicz, M. (1994). Chlorophyllase: occurrence, functions, mechanism of action, effects of external and internal factors. Photosynthetica, 30(3), 321–331. https://www.cabidigitallibrary.org/doi/full/10.5555/19950706776 [34] Rasekh, F, Rowshan, V., Vaziri, A., & Kholdebarin, B. (2019). Effects of salinity on biochemical and physiological characteristics of matricaria chamomilla. Journal of plant research (Iranian journal of biology), 32(3), 583–595. (In Persian). https://plant.ijbio.ir/article_1376.html [35] Chrysargyris, A., Michailidi, E., & Tzortzakis, N. (2018). Physiological and biochemical responses of lavandula angustifolia to salinity under mineral foliar application. Frontiers in plant science, 9, 339208. [36] Pasandi Pour, A., Farahbakhsh, H., & Saffari, M. (2014). Response of fenugreek plants to short-term salinity stress in relation to lipid peroxidation, antioxidant activity and protein content. Journal of ethno-pharmaceutical products, 1(1), 45–52. [37] Noohpisheh, Z., Amiri, H., Mohammadi Gholami, A., & Farhadi, S. (2020). Investigating the application of ZnO nanoparticle on morphological and physiological parameters of two cultivars of Fenugreek (trigonella foenum-graecum L.) under salinity stress. Plant process and function, 9(35). http://jispp.iut.ac.ir/article-1-1223-en.html [38] Khan, M. N. (2016). Nano-titanium dioxide (nano-TiO2) mitigates NaCl stress by enhancing antioxidative enzymes and accumulation of compatible solutes in tomato (Lycopersicon esculentum Mill.). Journal of plant sciences, 11(1-3), 1–11. [39] Khanna-Chopra, R., & Selote, D. S. (2007). Acclimation to drought stress generates oxidative stress tolerance in drought-resistant than -susceptible wheat cultivar under field conditions. Environmental and experimental botany, 60(2), 276–283. https://www.sciencedirect.com/science/article/pii/S0098847206001638 [40] Harinasut, P., Poonsopa, D., Roengmongkol, K., & Charoensataporn, R. (2003). Salinity effects on antioxidant enzymes in mulberry cultivar. Science asia, 29(2), 109–113. [41] Carbajal-Vázquez, V. H., Gómez-Merino, F. C., Alcántar-González, E. G., Sánchez-García, P., & Trejo-Téllez, L. I. (2022). Titanium increases the antioxidant activity and macronutrient concentration in tomato seedlings exposed to salinity in hydroponics. Plants, 11(8). https://www.mdpi.com/2223-7747/11/8/1036 [42] Khan, N., Bano, A., & Babar, M. D. A. (2019). The stimulatory effects of plant growth promoting rhizobacteria and plant growth regulators on wheat physiology grown in sandy soil. Archives of microbiology, 201(6), 769–785. https://doi.org/10.1007/s00203-019-01644-w [43] Soussi, M., Ocana, A., & Lluch, C. (1998). Effects of salt stress on growth, photosynthesis and nitrogen fixation in chick-pea (Cicer arietinum L.). Journal of experimental botany, 49(325), 1329–1337. [44] Castorena, M. V., Valencia, E. A. C., Ibarra, M. A. I., & Ulery, A. L. (2006). Absorción y traslocación de sodio y cloro en plantas de chile fertilizadas con nitrógeno y crecidas con estrés salino. Revista fitotecnia mexicana, 29(1), 79–88. [45] Calderón-Paniagua, N., Estrada-Luna, A. A., & Martinez-Hernández, J. D. J. (2001). Efecto de la salinidad en el crecimiento y absorción nutrimental de plantas micropropagadas de nopal (Opuntia SPP). Revista chapingo: serie ciencias forestales y del ambiente, 7(2), 127–132. [46] Kleiber, T., & Markiewicz, B. (2013). Application of “Tytanit” in greenhouse tomato growing. Acta scientiarum polonorum. hortorum cultus, 12(3), 117–126. [47] Cherchi, C., Lin, Y., & Gu, A. Z. (2021). Nano-Titanium dioxide exposure impacts nitrogen metabolism pathways in cyanobacteria. Environmental engineering science, 38(6), 469–480. https://doi.org/10.1089/ees.2020.0150 [48] Cherchi, C., Lin, Y., & Gu, A. Z. (2020). Nano-titanium dioxide exposure impacts nitrogen metabolism pathways in cyanobacteria. Environmental engineering science, 38(6), 469–480. DOI:10.1089/ees.2020.0150 [49] Tufail, A., Li, H., Naeem, A., & Li, T. X. (2018). Leaf cell membrane stability-based mechanisms of zinc nutrition in mitigating salinity stress in rice. Plant biology, 20(2), 338–345. https://onlinelibrary.wiley.com/doi/abs/10.1111/plb.12665 | ||
آمار تعداد مشاهده مقاله: 158 تعداد دریافت فایل اصل مقاله: 206 |