
تعداد نشریات | 25 |
تعداد شمارهها | 939 |
تعداد مقالات | 7,734 |
تعداد مشاهده مقاله | 12,765,546 |
تعداد دریافت فایل اصل مقاله | 9,080,980 |
تاثیر تنش شوری و محلولپاشی با نانوذرات اکسید روی، آهن و سلنیوم بر رشد و برخی صفات فیزیولوژیک Gazania splendens L. | ||
زیست شناسی کاربردی | ||
دوره 38، شماره 1 - شماره پیاپی 83، اسفند 1403 | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22051/jab.2024.46663.1618 | ||
نویسندگان | ||
آیلار سردارلو1؛ لمیا وجودی مهربانی* 2؛ کامبیز عزیزپور3 | ||
1فارغ التحصیل کارشناسی ارشد، گروه زراعت و اصلاح نباتات، دانشکده کشاورزی، دانشگاه شهید مدنی آذربایجان. تبریز، ایران | ||
22دانشیار، گروه زراعت و اصلاح نبات دانشکده کشاورزی، دانشگاه شهید مدنی آذربایجان. تبریز، ایران | ||
3استادیار ، گروه زراعت و اصلاح نبات دانشکده کشاورزی، دانشگاه شهید مدنی آذربایجان. تبریز، ایران | ||
چکیده | ||
گیاهان زینتی رشدکرده در مناطق شهری اغلب در مواجه با تنش شوری قرار میگیرند. روشها: بهمنظور بررسی تاثیر محلول-پاشی نانوذرههای اکسید روی، آهن و سلنیوم (صفر و 2 گرم در لیتر) و تنش شوری کلریدسدیم (صفر، 100 و 200 میلیمولار) برگیاه گازانیا، آزمایشی بصورت فاکتوریل برمبنای طرح کاملا تصادفی در گلخانه تحقیقاتی دانشگاه شهید مدنی آذربایجان اجرا شد. نتایج و بحثیافتهها: بیشترین وزنخشک بخش هوایی در تیمارهای بدون تنش شوری و تنش 100 میلیمولار با محلول-پاشی نانوذرههای روی و آهن مشاهده شد. تعداد گل (4 عدد) در تیمارهای بدون تنش شوری با محلولپاشی اکسیدروی و آهن، و شوری 100 میلیمولار با محلولپاشی نانوذره آهن افزایش یافت. محتوای سدیم، نشت یونی، پراکسید هیدروژن، و مالون دی-آلدئید در تیمار شوری 200 میلیمولار کلریدسدیم در شرایط بدون محلولپاشی افزایش یافت. فعالیت کاتالاز در تیمار تنش 100 میلیمولار کلریدسدیم با محلولپاشی نانوذره سلنیوم و روی افزایش یافت. نتیجهگیری: نتایج نشان داد، شوری تاثیر منفی بر صفات مورد مطالعه گازانیا داشت. محلولپاشی با نانوذرههای اکسیدروی و آهن تاثیر مثبت در افزایش ترکیبات آنتیاکسیدانی آنزیمی، غیرآنزیمی و وزنخشک بخش هوایی گیاه در تنش شوری 100 میلیمولار کلریدسدیم را داشت و مشخص شد که گیاه گازانیا قادر به تحمل شوری 100 میلیمولار کلریدسدیم همراه با محلولپاشی میباشد. | ||
کلیدواژهها | ||
پراکسید هیدروژن؛ فنل؛ کلروفیل؛ گازانیا؛ نشت یونی | ||
عنوان مقاله [English] | ||
Evaluation of salinity stress and foliar application of nano ZnO, Fe and Se on growth and some physiological traits of Gazania splendens L. | ||
نویسندگان [English] | ||
Aylar Sardarlou1؛ وجودی مهربانی Vojodi Mehrbani2؛ Kambiz Azizpour3 | ||
1Department of Agronomy and Plant Breeding, Azarbaijan Shahid Madani University | ||
22Assistant Professor, Department of Agronomy and Plant Breeding, Faculty of Agriculture, Shahid Madani University of Azerbaijan. Tabriz, Iran | ||
3Assistant Professor.Department of Agronomy and Plant Breeding, Azarbaijan Shahid Madani University | ||
چکیده [English] | ||
Introduction: Ornamental plants grown growing in urban areas often face salinity stress. Methods: To evaluate the effects of foliar application of nano ZnO, Fe, and Se (zero and 2 g L-1) and NaCl salinity stress (0, 100, 200 mM) in on Gazania splendens L.; a factorial experiment was conducted based on completely randomized designs was conducted in Research Greenhouse of Azarbaijan Shahid Madani University, Iran. Results and discussion: The results revealed that highest aerial parts dry weight, was recorded at no salinity and 100 mM NaCl salinity × nano Fe and ZnO foliar spray.The number of flowers (4) increased in under no salinity stress with+ ZnO and Fe foliar spraying and 100 mM salinity stress with + iron nanoparticle foliar sprayingapplication. The Na content, ion leakage, H2O2 content and malondialdehyde content were the highest recorded at NaCl 200 mM × no-foliar spray.Catalase activity was increased in NaCl 100 mM × nono Se and ZnO foliar application. Conclusion: The results showed that salinity had adverse effects on the studied traits of Gazania splendens L. However, Ffoliar spraying with ZnO and iron nanoparticles had a positive effect on increasing the enzymatic and non-enzymatic antioxidants activity compounds, and aerial parts dry weight in specially under 100 mM salinity stress, and it was found that the. Overall, Gazania plant is was able to withstand the salinity stress of 100 mM sodium chloride | ||
کلیدواژهها [English] | ||
Gazania splendens, Chlorophyll, H2O2, Ion leakage, Phenol | ||
مراجع | ||
Abdoli, A., & Ghassemi-Golezani, K. (2025). Foliar treatments of salicylic acid and iron nanoparticles enhanced antioxidant potential and essential oil production of ajowan under salt stress. Plant Biosystems-An International Journal Dealing With All Aspects of Plant Biology, 5: 1-11. https://doi://doi.org/10.1080/11263504.2024.2446790 Ali, M., Ijaz, M., Ikram, M., Ul-Hamid, A., Avais, M. , & Anjum, A.A. (2021). Biogenic synthesis, characterization and antibacterial potential evaluation of copper oxide nanoparticles against Escherichia coli. Nanoscale Research Letters.16, 148. https: //doi. org/10. 1186/ s11671-021-03605-z Alpaslan, M., Inal, A., Gunes, A., Cikili, Y., & Oscan, H. (1999). Effect of zinc treatment on the alleviation of sodium and chloride injury in tomato (Lycopersicum esculentum (L.) Mill. cv. Lale) grown under salinity. Turkish Journal of Botany, 23(1), 1-6. Amaranathareddy, V., Lokesh, U., Venkatesh, B., & Sudhakar, C. (2015). Pb-stress induced oxidative stress caused alterations in antioxidant efficacy in two groundnut (Arachis hypogaea L.) cultivars. Agricultural Sciences, 6, 1283-1297.AOAC. (1990). Official methods of analysis. Association of Official Agricultural Chemists., Washington., DC. Aslam, M., Saeed, M.S., Sattar, S., Sajad, S., Sajjad, M., Adnan, M., Iqbal, M., & Sharif, M.T. (2017). Specific role of proline against heavy metals toxicity in plants. Indian Journal of Pure & Applied Biosciences, 5, 27–34. http: //dx. doi. org/10. 18782/2320-7051. 6032 Badshah, I., Mustafa, N., Khan, R., Mashwani, Z. R., Raja, N. I., Almutairi, M. H., Aleya, L., Sayed, A.A., Zaman., S., Sawati, L., & Sohail, K. (2023). Biogenic titanium dioxide nanoparticles ameliorate the effects of salinity stress in wheat crop. Agronomy, 13(2), 352. https: //doi. org/10. 3390/agronomy13020352. Boudsocq, M., & Sheen, J. (2013). CDPKs in immune and stress signaling. Trends Plant Science, 18, 30–40. https: //doi. org/10. 1016/j. tplants., 2012. 08. 008 Chang, C.C., Yang, M.H., Wen, H. M., & Chern, J.C. (2002). Estimation of total flavonoid content in propolis by two complementary colorimetric methods. Journal of Food and Drug Analysis, 10(3), 178-182. : https: //doi. org/10. 38212/2224-6614. 2748 Diao, M., Ma, L., Wang, J., Cui, J., Fu, A., & Liu, H. (2014). Selenium promotes the growth and photosynthesis of tomato seedlings under salt stress by enhancing chloroplast antioxidant defence system. Journal of Plant Growth Regulation, 33, 671-682. https: //doi. org/10. 1007/s00344-014-9416-2 El-Naggar, A., El-Kiey, M., Koreish, E., & Zaid, N.M. (2020). Physiological response of gazania plants to growing media and organic compost. Scientific Journal of Flowers and Ornamental Plant, 7(1), 11-26. https: //doi. org/10. 21608/sjfop. 2020. 91393 El-Saadony, M.T., ALmoshadak, A.S., Shafi, M.E., Albaqami, N.M., Saad, A.M., El-Tahan, A.M., & Helmy, A.M. (2021). Vital roles of sustainable nano-fertilizers in improving plant quality and quantity-an updated review. Saudi Journal of Biological Sciences, 12(9), 1-11. https: //doi. org/10. 1016/j. sjbs. 2021. 08. 032 Fedina, I., Georgieva, K., Velitchkova, M., & Grigorova, I. (2006). Effect of pretreatment of barley seedlings with different salts on the level of UV-B induced and UV-B absorbing compounds. Environmental and Experimental Botany, 56, 225-230. https://doi. org/10. 1016/j. envexpbot. 2005. 02. 006 Ghaffari Yaichi, Z., Hassanpouraghdam, M.B., Rasouli, F. Aazami, M.A, Vojodi Mehrabani, L., Fathpour Jabbari, S., Asadi, M., Esfandiari, E. & Jimenez-Becker, S. (2025). Zinc oxide nanoparticles foliar use and arbuscular mycorrhiza inoculation retrieved salinity tolerance in Dracocephalum moldavica L. by modulating growth responses and essential oil constituents. Scientific Reports, 15, 492 https://doi.org/10.1038/s41598-024-84198-2 Ghanbari, F., Bag-Nazari, M., & Azizi, A. (2023). Exogenous application of selenium and nano-selenium alleviates salt stress and improves secondary metabolites in Lemon verbena under salinity stress. Scientific Report, 13, 5352. https: //doi. org/10. 1038/s41598-023-32436-4 Giannopolitis, C.N., & Ries, S.K. (1977). Superoxide dismutases: II. Purification and quantitative relationship with water-soluble protein in seedlings. Plant Physiology, 59(2), 315-318. https: //doi. org/10. 1104/pp. 59. 2. 315 Gupta, S., & Pandey, S. (2020). Enhanced salinity tolerance in the common bean (Phaseolus vulgaris) plants using twin ACC deaminase producing rhizobacterial inoculation. Rhizosphere, 16, 100241. https: // doi. org/ 10. 1016/j. rhisph. 2020. 100241 Handa, N., Kohli, S.K., Sharma, A., Thukral, A.K., Bhardwajo, R., Abd-allah, E.F., Alqarawi, A.A., & Ahmad, P. (2019). Selenium modulates dynamics of antioxidative defence expression, photosynthetic attributes and secondary metabolites to mitigate chromium toxicity in Brassica juncea L. plants. Environmental and Experimental Botany. 161, 180-192. https: //doi. org/10. 1016/j. envexpbot. 2018. 11. 009 Hassan, U., Aamer, M.M., Chattha, M.U., Haiying, T., Shahzad, B., Barbanti, L., Nawaz, M., Rasheed, A., Afzal, A., Liu, Y., & Guoqin, H. (2020). The critical role of zinc in plants facing the drought stress. Agriculture. 10, 396. https: // doi. org/ 10. 3390/ agric ultur e1009 0396 Hassanpouraghdam, M.B., Vojodi Mehrabani, L., Badali, R., Aazami, Ma., Rasouli, F., Kakaei, K., & Szczepanek, M. (2022). Cerium Oxide salicylic acid nanoparticles (CeO2: Sa-NPs) foliar application and in- soil animal manure use influence the growth and physiological responses of Aloe vera L. Agronomy, 12, 731. https: //doi. org/10. 3390/agronomy12030731. Hawrylak -Nowak, B., Rubinowska, K., & Jolonta, M. (2019). Selenium-induced improvements in the ornamental value and salt stress resistance of Plectranthus scutellarioides (L.) R. Br. Folia Horticulturae, 3(1). DOI: 10. 2478/fhort-2019-0016 Heath, R.L., & Packer, L. (1968). Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics, 125(1), 189-198. https: //doi. org/10. 1016/0003-9861(68)90654-1 Hamed, K.B., Castagna, A., Salem, E., Ranieri, A., & Abdelly, C. )2007(. Sea fennel (Crithmum maritimum L.) under salinity conditions: a comparison of leaf and root antioxidant responses. Plant Growth Regulation, 53(3): 185-194 Hendawy, S.F., & Khalid, K.A. (2005). Response of sage (Salvia officinalis L.) plants to zinc application under different salinity levels. Journal of Applied Sciences Research, 1(2), 147-155. Hezaveh, T.A., Pourakbar, L., Rahmani, F., & Alipour, H. (2020). Effects of ZnO NPs on phenolic compounds of rapeseed seeds under salinity stress. Journal of Plant Process and Function, 8, 11–18. http: // jispp. iut. ac. ir/ artic Hitter, T., Paula, O., Buta, E., & Cantor, M. (2022). Ornamental plnts used in landscape architecture design a biblical garden. Current Trends in Natural Sciences, 9(17), 249-256. Doi: 10. 47068/ctns. 2020. v9i17. 031 Hussain, S., Bai, Z., Huang, J., Cao, X., Zhu, L., Zhu, C., Khaskheli, MA., Zhong, C., Jin, Q., & Zhang, J. (2019). 1-methylcyclopropene modulates physiological., biochemical., and antioxidant responses of rice to diferent salt stress levels. Frontiers in Plant Science, 10,124. https: //doi. org/ 10. 3389/fpls. 2019. 00124 Hussein, M.M., & Abou-Baker, N.H. (2018). The contribution of nano-zinc to alleviate salinity stress on cotton plants. Royal Society open Science, 5, 171809. Doi:. org/10. 1098/sos. 171809. Kahlel, A., Ghidan, A., Al-Antary, T.A., Alshomali, I., & Asouf, H. (2020). Efects of nanotechnology liquid fertilizers on certain vegetative growth of broad bean (Vicia faba L.). Fresenius Environmental Bulletin, 29, 4763- 4768. Kamran, M., Parveen, A., Ahmar, S., Malik, Z., Hussain, S., Chattha, M.S., Saleem, M.H., Adil, M., Heidari, P., & Chen, J.T. (2020). An overview of hazardous impacts of soil salinity in crops, tolerance mechanisms, and amelioration through selenium supplementation. International Journal of Molecular Sciences, 21, 148. https: //doi. org/10. 3390/ijms21010148le-1- 1222- en. html. Lowry, O. H., Rosenbrough, N.J., Farr, A.L., & Randall, R.J. (1951). Protein measurement with the phenol reagent. Journal of Biological Chemistry,193, 265- 75. https: //doi. org/10. 1016/S0021-9258(19)52451-6 Luhova, L., Lebeda., A., Hedererová., D., & Pec. P. (2003). Activities of amine oxidase., peroxidase and catalase in seedlings of Pisum sativum L. under different light conditions. Plant Soil and Environment,. 49, 151-157. Marschner, H. (1995). Mineral nutrient of higher plants. 2nd Edition. London: Academic Press Limited., Harcourt Brace and Company Publisher https: //doi. org/10. 1146/annurev. pp. 31. 060180. 001323 Mishra, L.K., & Abidi, A.B. (2010). Phosphorus-zinc interaction: effects on yield components., biochemical composition and bread making qualities of wheat. World Applied Science, 10, 568–573. Mogazy, A.M., & Hanafy, R.S. (2022). Foliar spray of biosynthesized zinc oxide nanoparticles alleviate salinity stress efect on Vicia faba Plants. Journal of Soil Science and Plant Nutrition, 22, 2647–2662. Mozafari, A.A., Ghdakchi asl, A., & Chaderi, N. (2018). Grape response to salinity stress and role of iron nanoparticle and potassium silicate to mitigate salt induced damage under in vitro conditions. Physiology and molecular Biology of Plants, 24(1), 25-35 Munns, R., & Tesster, M. (2008). Mechanism of salinity tolorance. Annual Review of Plant Biology, 59: 651-658. https: //doi. org/10. 1146/annurev. arplant. 59. 032607. 092911 Nasiri Y., Zehtab-Salmasi S., Nasrullahzadeh S., Najafi N., & Ghassemi-Golezani K. (2010). Effects of foliar application of micronutrients (Fe and Zn) on flower yield and essential oil of chamomile (Matricaria chamomilla L.). Journal of Medicinal Plants Research, 4(17), 1733-1737. DOI: 10. 5897/JMPR10. 083 Negacz, K., Malek, Z., de Vos, A., & Vellinga, P. (2022). Saline soils worldwide: Identifying the most promising areas for saline agriculture. Journal of Arid Environments, 203. https: //doi. org/10. 1016/j. jaridenv. 2022. 104775 Pessarakli, M. (2016). Handbook of Photosynthesis. 3rd edn. CRC press. 846 pages. Qu, Y.N., Zhou, Q., & Yu, B.J. (2009). Effects of Zn2+ and niflumic acid on photosynthesis in Glycine soja and Glycine max seedlings under NaCl stress. Environmental and Experimental Botany, 65, 304-309. https: //doi. org/10. 1016/j. envexpbot. 2008. 11. 005 Rasool, A., Shah, W.H., Mushtaq, N.U., Saleem, S., Hakeem, K.H., & ul Rehman, R. (2022). Amelioration of salinity induced damage in plants by selenium application: A review, South African Journal of Botany, 174, 98-105. https: //doi. org/10. 1016/j. sajb. 2021. 12. 029. Shahraki, B., Bayat, H., Aminifard, M.H. & Azami Atajan, F. (2022).effects of foliar application of selenium and nano-selenium on growth, flowering, and antioxidant activity of pot marigold (Calendula officinalis L.) under salinity stress conditions. Communications in Soil Science and Plant Analysis, 53(20), 2749-2765. Singh, A., Rajput, DV., Sharma, R., Ghazaryan, K., & Minkina, T. (2023). Salinity stress and nanoparticles: Insights into antioxidative enzymatic resistance, signaling, and defense mechanisms. Environmental Research, 35, https: //doi. org/10. 1016/j. envres. Subramanyam, K., Du Laing, G., & Van Damme, E.J.M. (2019). Sodium selenate treatment using a combination of seed priming and foliar spray alleviates salinity Stress in rice. Frontiers in Plant Science, 10, doi: 10. 3389/fpls. 2019. 00116. Vojodi Mehrabani L., Anvari Gheshlagh Y., & Motallebi Azar A. (2022). Foliar application of nano Fe and Se affected the growth and yield of Pelargonium graveolens under Salinity Stress. Journal of Horticultural Science, 36 (1), 213-228. https: //doi. org/10. 22067/jhs. 2021. 69767. 1041 Vojodi Mehrabani, L.V., Hassanpouraghdam, M.B., & Shamsi-Khotab, T. (2018). The effects of common and nano-zinc foliar application on the alleviation of salinity stress in Rosmarinus officinalis L. Acta Scientiarum Polonorum Hortorum Cultus, 17(6), 65-73. https: //doi. org/10. 24326/asphc. 2018. 6. 7 Weisany, W., Sohrabi, Y., Heidari, G., Siosemardeh, A., & Badakhshan, H. (2014). Effects of zinc application on growth, absorption and distribution of mineral nutrients under salinity stress in soybean (Glycine Max L.). Journal of Plant Nutrition, 37, 2255–2269. https: // doi. org/ 10. 1080/ 01904 167. 2014. 920386 Xue, T.L., Hartikainen H., & Piironen, V. (2001). Antioxidative and growth-promoting effects of selenium on senescing lettuce. Plant and Soil, 237, 55-61. https: //doi. org/10. 1023/A: 1013369804867 Zeng, J., Wang, D., Wu, Y., Guo, X., Zhang, Y., & Lu, X. (2016). Karyotype analysis of Gazania rigens varieties. Horticultural Plant Journal, 2(5), 279-283. https: //doi. org/10. 1016/j. hpj. 2016. 07. 004. Zhang, M., Gao, B., Chen, J., & Li, YC. (2015). Effects of graphene on seed germination and seedling growth. Journal of Nanoparticle Research, 17(2), 78. https: //doi. org/10. 1007/s11051-015-2885-9. Zhang, Q., Zhang, J., Shen, J., Silva, A., Dennis, D., & Barrow, C. (2006). A simple 96 well microplate method for estimation of total polyphenol content in seaweds. Journal of Applied Phycology, 18, 445-450. Doi: 10. 1007/s10811-006-9048. | ||
آمار تعداد مشاهده مقاله: 35 |