
تعداد نشریات | 25 |
تعداد شمارهها | 957 |
تعداد مقالات | 7,894 |
تعداد مشاهده مقاله | 13,334,111 |
تعداد دریافت فایل اصل مقاله | 9,466,663 |
بررسی تاثیرات سیال مغناطیسی بر روی بزرگی نیروی کاسیمیر در یک میکروسامانه سهلایه | ||
فیزیک کاربردی ایران | ||
مقالات آماده انتشار، پذیرفته شده، انتشار آنلاین از تاریخ 23 فروردین 1404 اصل مقاله (1.85 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22051/ijap.2025.49301.1440 | ||
نویسندگان | ||
فاطمه مهدی ملکی* 1؛ فاطمه تاجیک2 | ||
1دانشجوی کارشناسی ارشد، گروه فیزیک ماده چگال، دانشکده فیزیک، دانشگاه الزهرا، تهران، ایران | ||
2استادیار گروه ماده چگال، دانشکده فیزیک، دانشگاه الزهرا، تهران، ایران | ||
چکیده | ||
در این مطالعه حساسیت نیروی کاسیمیر در یک میکروسامانه سهلایه با در نظر گرفتن سیال مغناطیسی به عنوان لایه میانی و صفحات دارای ویژگیهای اپتیکی متفاوت با استفاده از نظریه لیفشیتز بررسی شده است. جنس صفحات از طلا (Au)، سیلیکا (SiO2) و سیلیکونکرباید (SiC) به منظور پوشش طیف گستردهای از رسانندگی، در نظر گرفته شده است. دیده شده است که با تغییر صفحات از رسانای خوب به رسانای ضعیف بزرگی نیروی کاسیمیر به شدت کاهش مییابد و اگر فاصله بین صفحات از یک لایه مایع پر شود، این روند کاهش بیشتر میباشد. نتایج نشان میدهد حضور سیال مغناطیسی که با افزودن نانوذرات مغناطیسی اکسید فریک (Fe3O4) به کروسین (C12H26-C15H32) تشکیل میشود، منجر به کاهش نیروی کاسیمیر میشود. همچنین با افزایش غلظت نانوذرات (در قطر ثابت) نیروی کاسیمیر دچار کاهش شدید شده و البته با افزایش قطر نانوذرات (درغلظت ثابت) نیروی کاسیمیر قدرت مییابد. نتایج نشان میدهد تاثیر ویژگی اپتیکی صفحات بر این رفتار تاثیرگذار است. همچنین مشاهده شده است در یک فاصله ثابت بین صفحات، افزودن نانوذرات مغناطیسی با قطر مشخص تأثیری بر بزرگی نیروی کاسیمیر نسبت به حالتی که لایهمیانی سیال غیرمغناطیسی است، ندارد و در نظر گرفتن این نکته در طراحی سامانههای میکروالکترومکانیکی (MEMS) که تحت اثرات مغناطیسی فعالیت میکنند، بسیار بااهمیت است. | ||
کلیدواژهها | ||
نیروی کاسیمیر؛ ویژگیهای اپتیکی؛ نظریه لیفشیتز؛ سیال مغناطیسی؛ نانوذرات مغناطیسی | ||
عنوان مقاله [English] | ||
Influence of Ferrofluid on the Casimir Force in a Three- layer Microsystem | ||
نویسندگان [English] | ||
Fatemeh Mahdi Maleki1؛ Fatemeh Tajik2 | ||
1M. Sc. Student, Department of Condensed Matter Physics, Faculty of Physics, Alzahra University, Tehran, Iran. | ||
2Assistant Professor, Department of Condensed Matter Physics, Faculty of Physics, Alzahra University, Tehran, Iran | ||
چکیده [English] | ||
Here, the sensitivity of the Casimir force in a three-layer microsystem is investigated by considering a ferrofluid as the middle layer and plates with different optical properties via Lifshitz theory. The plate materials are made of gold (Au), silica (SiO2), and silicon carbide (SiC) to cover a wide range of conductivity. It is observed that by changing the plates from a good conductor to a poor conductor, the magnitude of the Casimir force decreases significantly, and if the gap between the plates is filled with a liquid layer, this decrease is even greater. The results show that the presence of a ferrofluid, formed by adding ferric oxide (Fe3O4) magnetic nanoparticles to kerosene (C12H26-C15H32), leads to a reduction in the Casimir force. Moreover, increasing the nanoparticle concentration (at a constant diameter) causes a significant decrease in the Casimir force, while increasing the nanoparticle diameter (at a constant concentration) strengthens the Casimir force. The results indicate that the optical properties of the plates have a significant impact on this behavior. It has also been observed that at a fixed distance between the plates, the addition of magnetic nanoparticles with a specific diameter has no effect on the magnitude of the Casimir force compared to the case where the middle layer of fluid is nonmagnetic, and considering this point is very important in the design of microelectromechanical systems (MEMS) that operate under magnetic effects. | ||
کلیدواژهها [English] | ||
Casimir Force, Optical Properties, Lifshitz Theory, Ferrofluid, Magnetic Nanoparticles | ||
سایر فایل های مرتبط با مقاله
|
||
مراجع | ||
[1] Rodriguez, A.W., Capasso, F. and Johnson, S.G., "The Casimir effect in microstructured geometries", Nature photonics 5(4), 211-221, 2011. DOI: https://doi.org/10.1038/nphoton.2011.39
[2] Capasso, F., Munday, J.N., Iannuzzi, D. and Chan, H.B., "Casimir forces and quantum electrodynamical torques: Physics and nanomechanics", IEEE Journal of Selected Topics in Quantum Electronics 13(2), 400-414, 2007. DOI: https://doi.org/10.1109/jstqe.2007.893082
[3] Huang, Kerson. Fundamental Forces of Nature: The story of gauge fields. World Scientific, 2007. DOI: https://doi.org/10.1142/9789812770714_0008
[4] Saga, N. and Nakamura, T., "Elucidation of propulsive force of microrobot using magnetic fluid", Journal of Applied Physics 91(10), 7003-7005, 2002. https://doi.org/10.1063/1.1452197
[5] Goubault, C., Jop, P., Fermigier, M., Baudry, J., Bertrand, E. and Bibette, J., "Flexible magnetic filaments as micromechanical sensors", Physical review letters 91(26), 260802, 2003. https://doi.org/10.1103/PhysRevLett.91.260802
[6] Broer, W., "The Casimir force and micro-electromechanical systems at submicron-scale separations", (2014). Electronic ISBNs: 978-90-367-7464-2
[7] Tajik, F., "Casimir torques and lateral forces: influence of optical properties and surface morphology", (2018). Electronic ISBNs: 978-94-034-0818-7
[8] Zhabinskaya, D., "Casimir interactions between scatterers in carbon nanotubes", PhD diss., University of Pennsylvania, 2009.
[9] Bordag M., Klimchitskaya G. L., Mohideen U., and Mostepanenko V. M., Advances in the Casimir effect. PhD Thesis, Oxford university press, 2009.
[10] Ekinci, K.L. and Roukes, M.L., "Nanoelectromechanical systems", Review of scientific instruments 76(6), 2005.: https://doi.org/10.1063/1.1927327
[11] Casimir, H.B. and Polder, D., "The influence of retardation on the London-van der Waals forces", Physical Review 73(4), 360, 1948. DOI: https://doi.org/10.1103/PhysRev.73.360
[12] Dzyaloshinskii, I.E.E., Lifshitz, E.M., Pitaevskii, L.P. and Priestley, M.G., "The general theory of van der Waals forces", In Perspectives in Theoretical Physics, 443-492. Pergamon, 1992. https://doi.org/10.1016/B978-0-08-036364-6.50039-9
[13] Geyer, B., Klimchitskaya, G.L. and Mostepanenko, V.M., "Thermal Casimir interaction between two magnetodielectric plates", Physical Review B—Condensed Matter and Materials Physics 81(10), 104101, 2010. DOI: https://doi.org/10.1103/PhysRevB.81.104101
[14] Hasan, M.Z. and Kane, C.L., "Colloquium: topological insulators", Reviews of modern physics 82(4), 3045-3067, 2010. https://doi.org/10.1103/RevModPhys.82.3045
[15] Moore, J.E., "The birth of topological insulators", Nature 464(7286), 194-198, 2010. DOI: https://doi.org/10.1038/nature08916
[16] Tajik, F., Babamahdi, Z., Sedighi, M. and Palasantzas, G., "Nonlinear Actuation of Casimir Oscillators toward Chaos: Comparison of Topological Insulators and Metals", Universe 7(5), 123, 2021. https://doi.org/10.3390/universe7050123
[17] Tajik, F., Allameh, N., Masoudi, A.A. and Palasantzas, G., "Nonlinear actuation of micromechanical Casimir oscillators with topological insulator materials toward chaotic motion: Sensitivity on magnetization and dielectric properties", Chaos: An Interdisciplinary Journal of Nonlinear Science 32(9), 2022. DOI: https://doi.org/10.1063/5.0100542
[18] Ashourvan, A., Miri, M. and Golestanian, R., "Rectification of the lateral Casimir force in a vibrating noncontact rack and pinion", Physical Review E—Statistical, Nonlinear, and Soft Matter Physics 75(4), 040103, 2007. DOI: https://doi.org/10.1103/PhysRevE.75.040103
[19] DelRio, F.W., De Boer, M.P., Knapp, J.A., David Reedy Jr, E., Clews, P.J. and Dunn, M.L., "The role of van der Waals forces in adhesion of micromachined surfaces", Nature materials 4(8), 629-634, 2005. https://doi.org/10.1038/nmat1431
[20] Serry, F.M., Walliser, D. and Maclay, G.J., "The role of the Casimir effect in the static deflection and stiction of membrane strips in microelectromechanical systems (MEMS)", Journal of Applied Physics 84(5), 2501-2506, 1998. DOI: https://doi.org/10.1063/1.368410
[21] Tajik, F., Sedighi, M. and Palasantzas, G., "Sensitivity of actuation dynamics on normal and lateral Casimir forces: Interaction of phase change and topological insulator materials", Chaos: An Interdisciplinary Journal of Nonlinear Science 31(10), 2021. https://doi.org/10.1063/5.0065033
[22] Munday, J.N., Capasso, F., Parsegian, V.A. and Bezrukov, S.M., "Measurements of the Casimir-Lifshitz force in fluids: The effect of electrostatic forces and Debye screening", Physical Review A—Atomic, Molecular, and Optical Physics 78(3),032109, 2008. https://doi.org/10.1103/PhysRevA.78.032109
[23] Klimchitskaya, G.L., Mostepanenko, V.M., Nepomnyashchaya, E.K. and Velichko, E.N., "Impact of magnetic nanoparticles on the Casimir pressure in three-layer systems", Physical Review B 99(4), 045433, 2019. https://doi.org/10.1103/PhysRevB.99.045433
[24] Velichko, E.N., Klimchitskaya, G.L. and Mostepanenko, V.M., "Dispersion forces between metal and dielectric plates separated by a magnetic fluid", Technical Physics 64, 1260-1266, 2019. https://doi.org/10.1134/S1063784219090214
[25] Velichko, E.N., Klimchitskaya, G.L. and Nepomnyashchaya, E.N., "Casimir effect in optoelectronic devices using ferrofluids", Journal of Electronic Science and Technology 18(1), 100024, 2020. https://doi.org/10.1016/j.jnlest.2020.100024
[26] Obrecht, J.M., Wild, R.J., Antezza, M., Pitaevskii, L.P., Stringari, S. and Cornell, E.A., "Measurement of the temperature dependence of the Casimir-Polder force", Physical review letters 98(6), 063201, 2007. https://doi.org/10.1103/PhysRevLett.98.063201
[27] Nasiri, Z., Aali, M. and Tajik, F., "Influence of Thermal Fluctuation on Attractive and Repulsive Casimir Forces in Microsystem with Topological Insulator Material", Iranian Journal of Applied Physics 14(2), 128-144, 2024. https://doi.org/10.22051/ijap.2024.45814.1374
[28] Dadi, Z., Masoudi, A.A., Tajik, F. and Palasantzas, G., "Influence of optical property contrast on the critical distribution of electrostatic torques in double-beam torsional Casimir actuators: Non-linear actuation toward chaotic motion", Chaos: An Interdisciplinary Journal of Nonlinear Science 33(11), 2023. DOI: https://doi.org/10.1063/5.0168044
[29] Tajik, F. and Palasantzas, G., "Dynamical Sensitivity of Three-Layer MEMS to the Optical Properties of the Intervening Liquid Layer", (2023). https://doi.org/10.20944/preprints202309.1995.v1
[30] Sedighi, M., Svetovoy, V.B., Broer, W.H. and Palasantzas, G., "Casimir forces from conductive silicon carbide surfaces", Physical Review B 89(19), 195440, 2014. https://doi.org/10.1103/PhysRevB.89.195440
[31] Hong, C.Y., Jang, I.J., Horng, H.E., Hsu, C.J., Yao, Y.D. and Yang, H.C., "Ordered structures in Fe3O4 kerosene-based ferrofluids", Journal of applied physics 81(8), 4275-4277, 1997. https://doi.org/10.1063/1.364800
[32] Mirzaei, M., Masoudi, A.A., Tajik, F. and Palasantzas, G., "Dynamical sensitivity of a three-layer microsystem under the influence of the Casimir force in a ferrofluid", Chaos, Solitons & Fractals 189, 115637, 2024. https://doi.org/10.1016/j.chaos.2024.115637 | ||
آمار تعداد مشاهده مقاله: 37 تعداد دریافت فایل اصل مقاله: 40 |