تعداد نشریات | 25 |
تعداد شمارهها | 937 |
تعداد مقالات | 7,696 |
تعداد مشاهده مقاله | 12,621,362 |
تعداد دریافت فایل اصل مقاله | 8,985,643 |
مقالۀ پژوهشی: تحقق رمزگشای تمام نوری مبتنی بر بلورهای فوتونی با بکارگیری کاواک های تشدید غیرخطی | ||
فیزیک کاربردی ایران | ||
دوره 10، شماره 3 - شماره پیاپی 22، مهر 1399، صفحه 35-45 اصل مقاله (3.1 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22051/ijap.2021.32065.1164 | ||
نویسندگان | ||
حامد علیپور بنائی* 1؛ فرهاد مهدیزاده2 | ||
1دانشیار، گروه مهندسی برق، واحد تبریز، دانشگاه آزاد اسلامی، تبریز، ایران | ||
2استادیار، باشگاه پژوهشگران نخبگان جوان، واحد ارومیه، دانشگاه آزاد اسلامی، ارومیه، ایران | ||
چکیده | ||
رمزگشاهای تمام نوری نقشی کلیدی در طراحی و پیاده سازی سیستم های پردازش تمام نوری ایفا میکنند. سرعت و توان سوئیچ زنی و ابعاد ساختار از جمله مهمترین پارامترهایی هستند که باید در طراحی افزاره های تمام نوری مورد توجه قرار بگیرند. در این تحقیق با استفاده از دو کاواک تشدید غیرخطی مبتنی بر بلورهای فوتونی ساختاری برای طراحی و پیادهسازی رمزگشای تمام نوری ارائه شده است. کاواکهای تشدید غیرخطی با اضافه نمودن میله های غیرخطی از جنس شیشه آلاییده شده در داخل کاواک ایجاد شدهاند. ساختار ارائه شده دارای یک درگاه فعال ساز، یک درگاه ورودی و دو درگاه خروجی است. در صورت خاموش بودن درگاه فعالساز، بدون توجه به وضعیت درگاه ورودی، هر دو درگاه خروجی خاموش خواهند بود. در طراحی این ساختار به یک ورودی فعالساز و یک ورودی کنترل نیاز داریم. درگاه ورودی فعالساز بطور مستقیم با استفاده از یک موجبر فرعی به موجبر اصلی وصل شده است. ورودی کنترلی رمزگشا که همان درگاه ورودی اصلی رمزگشا 1 به 2 است به واسطه یک تقسیم کننده توان نوری به موجبر اصلی وصل شده است. همچنین برای بهبود راندمان انتقال نور از درگاه فعالساز به موجبر اصلی، دو نقص نقطه ای با شعاع 60 نانومتر در محل اتصال موجبرهای ورودی به موجبر اصلی تعبیه شده است. در ساختار طراحی شده حداکثر زمان تاخیر 5 پیکوثانیه است. | ||
کلیدواژهها | ||
رمزگشای تمام نوری؛ بلورهای فوتونی؛ کاواک تشدید غیرخطی؛ باند ممنوعه فوتونی | ||
عنوان مقاله [English] | ||
Research Paper: Realization of All Optical Decoder Based on Photonic crystals Using Nonlinear Resonant Cavities | ||
نویسندگان [English] | ||
Hamed Alipour-Banaei1؛ Farhad Mehdizadeh2 | ||
1Department of Electronics, Tabriz Branch, Islamic Azad University, Tabriz, Iran. | ||
2Assistant Professor, Young Researchers and Elite Club, Urmia Branch- Islamic Azad University, Urmia, Iran | ||
چکیده [English] | ||
All optical decoders play a key role in the design and implementation of all optical processing systems. Switching speed, power and structural dimensions are the most important parameters that should be considered in the design of all optical devices. In this research, by using two nonlinear resonance cavities based on photonic crystals, a structure for design and implementing an all optical decoder is presented. Nonlinear resonance cavities are created by adding nonlinear rods made of contaminated glass inside the cavity. The proposed structure has one activation port, one input port and two output ports. If the activator port is off, both outputs will be off regardless of the status of the input port situation. In design of this structure, we need an activator input port and a control input. The activator input port is connected directly to the main waveguide using a side waveguide. The control input of the decoder, which is the same as the main input port of the decoder 1 to 2, is connected to the main waveguide by means of an optical power divider. Also to improve the efficiency of the light transmission from the activator port to the main waveguide, two point defects with a radius of 60 nm have been installed at the junction of the input waveguides to the main waveguide. In the designed structure, the maximum delay time is 5 ps. | ||
کلیدواژهها [English] | ||
All Optical Decoder, Photonic Crystals, Nonlinear Resonance Cavity, Photonic Bandgap | ||
مراجع | ||
[1] Talebzadeh R., Soroosh M., and Daghooghi T., A 4-Channel Demultiplexer Based on 2D Photonic Crystal Using Line Defect Resonant Cavity. IETE J. Res.62-6. 866–872. 2016 [2] Talebzadeh R., Soroosh M., Kavian Y. S. and Mehdizadeh F., All-optical 6- and 8-channel demultiplexers based on photonic crystal multilayer ring resonators in Si/C rods. Photonic Netw. Commun.34. 248-257. 2017 [3] Zavvari M. and Mehdizadeh F., Photonic Crystal Cavity with L3-Defect for Resonant Optical Filtering. Frequenz. 68. 519–523. 2014 [4] Diaz-Valencia B. F. and Calero J. M., Photonic band gaps of a two-dimensional square lattice composed by superconducting hollow rods. Phys. C Supercond. 505. 74–79. 2014 [5] Rakhshani M. Reza and Mansouri-Birjandi M. Ali, Design and simulation of wavelength demultiplexer based on heterostructure photonic crystals ring resonators. Phys. E Low-dimensional Syst. Nanostructures. 50. 97–101. 2013 [6] Noori M. and Soroosh M., A comprehensive comparison of photonic band gap and self-collimation based 2D square array waveguides. Opt. - Int. J. Light Electron Opt. 126. 4775–4781. 2015 [7] Mansouri-Birjandi M. A., Tavousi A. and Ghadrdan M., Full-optical tunable add/drop filter based on nonlinear photonic crystal ring resonators. Photonics Nanostructures - Fundam. Appl. 21. 44–51. 2016 [8] Yanik M. F., Fan S., Soljačić M. and Joannopoulos J. D., All-optical transistor action with bistable switching in a photonic crystal cross-waveguide geometry. Opt. Lett. 28. 2003 [9] Dideban A., Habibiyan H. and Ghafoorifard H., Photonic crystal channel drop filter based on ring-shaped defects for DWDM systems. Phys. E Low-dimensional Syst. Nanostructures. 87. 77–83. 2017 [10] Wang Y., Chen D., Zhang G., Wang J. and Tao S., A super narrow band filter based on silicon 2D photonic crystal resonator and reflectors. Opt. Commun. 363. 13–20. 2016 [11] Youcef Mahmoud M., Bassou G. and Metehri F., Channel drop filter using photonic crystal ring resonators for CWDM communication systems. Opt. - Int. J. Light Electron Opt. 125. 4718–4721. 2014 [12] Youcef Mahmoud M., Bassou G. and Taalbi A., A new optical add–drop filter based on two-dimensional photonic crystal ring resonator. Opt. - Int. J. Light Electron Opt. 124. 2864–2867. 2013 [13] Zavvari M., Design of Photonic Crystal-Based Demultiplexer with High-Quality Factor for DWDM Applications. J. Opt. Commun. 40. 135-138. 2019 [14] Kannaiyan V., Savarimuthu R. and Dhamodharan S. K., Performance analysis of an eight channel demultiplexer using a 2D-photonic crystal quasi square ring resonator. Opto-Electronics Rev. 25. 74–79. 2017 [15] Venkatachalam K., Kumar D. S. and Robinson S., Investigation on 2D photonic crystal-based eight-channel wavelength-division demultiplexer. Photonic Netw. Commun. 34. 100–110. 2017 [16] Notomi M., Shinya A., Mitsugi S., Kira G., Kuramochi E. and Tanabe T., Optical bistable switching action of Si high-Q photonic-crystal nanocavities. Opt. Express. 13. 2005 [17] Rani P., Kalra Y. and Sinha R. K., Realization of and gate in y shaped photonic crystal waveguide. Opt. Commun. 298–299. 227–231. 2013 [18] Rani P., Kalra Y. and Sinha R. K., Design of all optical logic gates in photonic crystal waveguides. Opt. - Int. J. Light Electron Opt. 126. 950–955. 2015 [19] haq Shaik E. and Rangaswamy N., Multi-mode interference-based photonic crystal logic gates with simple structure and improved contrast ratio. Photonic Netw. Commun. 34. 140-148. 2017 [20] Daghooghi T., Soroosh M. and Ansari-Asl K., Ultra-fast all-optical decoder based on nonlinear photonic crystal ring resonators. Appl. Opt. 57. 2250–2257. 2018 [21] Daghooghi T., Soroosh M. and Ansari-Asl K., A novel proposal for all-optical decoder based on photonic crystals. Photonic Netw. Commun. 35. 335-341. 2018 [22] Alipour-Banaei H., Rabati M. G., Abdollahzadeh-Badelbou P. and Mehdizadeh F., Application of self-collimated beams to realization of all optical photonic crystal encoder. Phys. E Low-dimensional Syst. Nanostructures. 75. 77–85. 2016 [23] Ouahab I. and Rafah N., A novel all optical 4×2 encoder switch based on photonic crystal ring resonators. Opt. - Int. J. Light Electron Opt. 127-19. 7835-7841. 2016 [24] Mehdizadeh F., Soroosh M., Alipour-Banaei H. and Farshidi E., All optical 2-bit analog to digital converter using photonic crystalbased cavities. Opt. Quantum Electron. 49. 2017 [25] Mehdizadeh F., Soroosh M., Alipour-Banaei H. and Farshidi E., Ultra-fast analog-to-digital converter based on a nonlinear triplexer and an optical coder with a photonic crystal structure. Appl. Opt. 56-7. 1799–1806. 2017 [26] Mehdizadeh F., Soroosh M., Alipour-Banaei H. and Farshidi E., A Novel Proposal for All Optical Analog-to-Digital Converter Based on Photonic Crystal Structures. IEEE Photonics J. 9-2. 1–11. 2017 [27] Serajmohammadi S., Alipour-Banaei H. and Mehdizadeh F., All optical decoder switch based on photonic crystal ring resonators. Opt. Quantum Electron. 47-5. 1109–1115. 2014 [28] Mehdizadeh F., Alipour-Banaei H. and Serajmohammadi S., Design and simulation of all optical decoder based on nonlinear PhCRRs. Opt. - Int. J. Light Electron Opt. 156. 701–706. 2018 [29] Khosravi S. and Zavvari M., Design and analysis of integrated all-optical 2 × 4 decoder based on 2D photonic crystals. Photonic Netw. Commun. 35. 122-128. 2018 [30] Alipour-Banaei H., Mehdizadeh F., Serajmohammadi S. and Hassangholizadeh-Kashtiban M, A 2*4 all optical decoder switch based on photonic crystal ring resonators. J. Mod. Opt. 62-6. 430–434. 2014 [31] Youssefi B., Moravvej-Farshi M. K. and Granpayeh N., Two bit all-optical analog-to-digital converter based on nonlinear Kerr effect in 2D photonic crystals. Opt. Commun. 285. 3228–3233. 2012 [32] Neisy M., Soroosh M. and Ansari-Asl K., All optical half adder based on photonic crystal resonant cavities. Photonic Netw. Commun. 35. 245-250. 2018 | ||
آمار تعداد مشاهده مقاله: 782 تعداد دریافت فایل اصل مقاله: 585 |