تعداد نشریات | 25 |
تعداد شمارهها | 938 |
تعداد مقالات | 7,697 |
تعداد مشاهده مقاله | 12,623,602 |
تعداد دریافت فایل اصل مقاله | 8,986,254 |
کاربرد لایه پنهان در توسعه گرهچینی بر مبنای مستندات تاریخی در ایران | ||
مبانی نظری هنرهای تجسمی | ||
مقاله 8، دوره 8، شماره 1 - شماره پیاپی 15، خرداد 1402، صفحه 101-116 اصل مقاله (1.26 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22051/jtpva.2022.38900.1376 | ||
نویسندگان | ||
احد نژاد ابراهیمی* 1؛ عارف عزیزپور شوبی2 | ||
1استاد، دانشکده معماری و شهرسازی، دانشگاه هنر اسلامی تبریز، تبریز، ایران | ||
2دانشجوی دکتری معماری اسلامی، دانشکده معماری و شهرسازی، دانشگاه هنر اسلامی تبریز، تبریز، ایران | ||
چکیده | ||
گرهها یکی از پیچیدهترین الگوهای هندسی هستند که در دوران اسلامی بسیار توسعه یافتند و معماران ایرانی سهم عمدهای در توسعه آن داشتند. یکی از مسایل مهم در مطالعه گرهها روششناسی تولید گرهها هست. بر اساس اسناد مکتوب منتشر شده از استادان سنتی این هنر چنین برداشت میشود که روش تولید گرهها در معماری ایران مبتنی بر روش فلکی بوده است. اما بررسی اسناد تاریخی نشان میدهد، روش چندضلعیها در توسعه گرهها در معماری ایرانی نقش داشته است. این پژوهش با روش توصیفی-تحلیلی و استدلالی برای شناسایی ساختار و روششناسیهای طراحی گرهها با روش جمعآوری اطلاعات به طریق کتابخانهای و میدانی در پی پاسخ به این پرسشها است: 1) مستندات تاریخی نشاندهنده کاربرد فن چندضلعی برای تولید گرهها در هنر و معماری ایران کدامند؟ 2) سیر کاربرد فن چندضلعی در توسعه گرهها در معماری ایران چگونه بوده است؟ 3) چرا با وجود فن چندضلعی، استادان ایرانی روش ترسیم فلکی را در کتابهای خود معرفی کردهاند؟ مدارک مورد استناد در این پژوهش علاوه بر طومار برجای مانده، دربردارنده کاربرد فن چندضلعی در گرههای برخی بناها نیز است. نتایج این پژوهش نشان میدهد: تاریخ توسعه گرهها وابسته به فن چندضلعی بوده است و موزاییککاریها در ابتدا، بهصورت ساده بوده است و در ادامه، توسعه یافتند و پیچیدهتر و متنوعتر شدهاند. در این توسعه خود گرهها نیز بهعنوان در موزاییککاری مولد پایه بهکار گرفته شدهاند و در ترکیب با گره پیلی بروز یافتهاند. همچنین، با خردکردن موزاییککاری پایه در آلتهای گرهاصلی، شاهگرهها بهوجود آمدند که با استفاده از فن چندضلعی گره دیگری با مقیاس کوچکتر در داخل گره اصلی نقش بسته است. بهنظر میرسد کاربرد روش فلکی برای طراحی و توسعه گرهها نبوده، بلکه برای پیادهسازی گره در زمینههای مختلف بوده باشد. | ||
کلیدواژهها | ||
هندسه و کاشیکاری؛ گرهچینی؛ روششناسیهای طراحی و ترسیم؛ روش چندضلعی؛ روش فلکی | ||
عنوان مقاله [English] | ||
Application of the Hidden Layer in the Development of Gireh Based on Iranian Historical Documentation and Monuments | ||
نویسندگان [English] | ||
ََََََََAhad Nejad Ebrahimi1؛ Aref Azizpour Shoubi2 | ||
1Professor at the faculty of Architecture and Urbanism, Islamic Art University, Tabriz Branch, Tabriz, Iran | ||
2PhD Student of Islamic Architecture at the Faculty of Architecture and Urbanism, Islamic Art University, Tabriz Branch, Tabriz, Iran | ||
چکیده [English] | ||
Decorative arts had emerged in various forms in the Islamic world, and Gireh is one of the most complex forms that constitute an essential part of the Islamic arts in the world, which had developed over time. These rely on the geometric rules in the mathematical sciences. One of the most critical issues in the studies of Gireh is the methodology knowledge of their designing and drawing that different researchers emphasize on different methods. Knowledge of the design methodology of Gireh is closely related to its aesthetics and originality. Iranian Islamic architecture significantly contributed to the development of Girehes, but their connection with their methodological knowledge was not obvious. Many scholars consider the method of developing Gireh in Iran based on the radial (Falaki) method, which has remained in the written sources of the last traditional Master of Iran. However, studies on historical documents such as the Topkapi scroll and the Girehs that remained on the Gonbad Soltanieh show that Iranian architects and artists were fully aware of the polygonal method and Gireh production techniques based on it and it used for developing Girehes in Iranian architecture. Therefore, this research seeks to answer the following questions with descriptive-analytical and reasoning methods by collecting information through libraries and field studies: 1- What evidences are left from the past that shows the use of polygonal technique to produce Girehes? 2- How had the application Process of the polygonal technique to the development of Girehes in Iranian architecture? 3- Why did the Iranian Master introduce the radial (Falaki) method to drawing in their books despite the polygonal technique? To answer these questions, after introducing the methodologies of Girehs production, the structure of Gireh is examined from the polygonal technique point of view along with its historical documents. Then, the developing process of Girehs in Iranian architecture is studied based on the development of underlying generative Tessellation. Finally, the radial and polygonal methods are compared, and Their application among the traditional Masters of Iran is examined. Despite numerous studies on the development of Girehs and polygonal technique, the new achievements of this research is new evidence of Girehs left on the surfaces of historic buildings, which presents the application of the polygonal technique in Iranian architecture. These expand the methods of using the polygonal technique to develop Girehs in Iranian architecture. These documents also show a new path in the development of Iranian Girehs, which indicates the use of the Gireh as an underlying tessellation in producing more complex Gireh such as Pili and dual-level Girehes, which is investigated in this study. The Knowledge of Girehes designing and implementation was a family knowledge and available to certain people in the community that architects passed these methods from one generation to the next generation in a secure way to prevent the revealing of this knowledge and usually transfer permission of this knowledge didn’t happen easily. Despite these limitations, methods of designing and applying Girehs were developed in various branches. Although the methods of producing Girehs are extensive and varied, some artists even invented their drawing methods. The four methods are prevalent among designers and researchers of this art and are widely used, including Radial (Falaki), Point-Jointed (Moroccan), the Grid, and the polygonal techniques. The polygonal method is the subject of this research discovered by Ernest Hanbury Hankin when he was visiting an Indian bath and was introduced to the contemporary world. Later, researchers realized that this method is historical by studying historical documents such as the Topkapi scroll. This method is often determined by drawing lines that connect from midpoints to each other’s in the underlying main polygon to create the main stars and the application of pattern lines. The presented method approximately adheres to J. Lee Registration, which creates a given star by identifying the number of sides of the main polygon relative to the number of consecutive sides at the midpoint to the midpoint of the line. Suppose the development Process of Girehs in the Islamic architecture of Iran is examined. In that case, it can be seen that the historical development Process of Girehs began with the formation of patterns on an orthogonal Grid and ended with a very complex tessellation. In addition to observing this method in the Topkapi scroll, the application of this method in the tiling of Gonbad Soltanieh is also evident; the designer kept the underlying generative tessellation in the final design. In addition, the same underlying generative tessellation was used to create another Gireh. Instead of arranging the Alāt (motif) at the midpoint, the Gireh was arranged according to the vertices of the underlying tessellation. It caused three Alāts of Shāmseh to meet at one point. Despite contemporary researchers emphasizing the midpoints of polygons in underlying tessellation in applying the polygonal technique. In addition, the use of Gireh as underlying generative tessellations is also evident in this building to produce Girehs, due to which the next generation of Gireh such as Pili Gireh was created in the Yazd Grand Mosque. In these Girehs, the Alāts of underlying generative Gireh were interweaved by Alāts. Due to this, the number of hidden layers increased. Because in addition to the generative Gireh (underlying tessellation of pili Gireh), there is also another underlying tessellation for the generative Gireh. The last stage of Gireh development is the dual-level Gireh (Shah-Gireh), which uses one Gireh as the preliminary design for the secondary Gireh inside the Alāts of primary Gireh. It is impossible to achieve such a design by using the radial method or applying the symmetry of a fragmented Alāts of Gireh. However, the polygons must be manipulated in the underlying tessellation, which shows the application of the polygonal technique in the history of Gireh development. The polygonal technique is evident from the existence of polygonal tessellation in the Topkapi scroll and Girehs on the remained surfaces of the monument and considering that in the evolution of Gireh in Iranian architecture. The main problem of the radial method is the impossibility to design a new Gireh, the whole process of drawing a Gireh in the radial method is step by step, and the artist needs to follow all the steps, the way of determining the secret line Also is not clear in this method which other arcs are defined. This line in the drawing of the written sources of the masters shows predetermined. In contrast, the polygon method is based on the combination of underlying polygons. Understanding this process makes it possible to place motifs in tessellation, draw the Gireh shape without following a special process, and change the tools based on the underlying tessellation. He came up with various designs. As well ass, it reached various designs by changing motifs based on tessellation. According to the study, the application of the radial method can be for implementing the Gireh on different bases that work be easier based on the tools of architects and artists of the classic era and prevented the disclosure of the design method of Gireh. | ||
کلیدواژهها [English] | ||
Geometry And Tiling, Gireh, Design and Drawing Methodologies, Polygonal Method, Radial (Falaki) Method | ||
مراجع | ||
Abas, S. J., & Salman, A. S. (1995). Symmetries of Islamic Geometrical Patterns. Singapore: World Scientific. Retrieved from https://books.google.com/books/about/Symmetries_of_Islamic_Geometrical_Patter.html?id=GgaXOuqjqaYC. Al Ajlouni, R. (2012). The Global Long-Range Order of Quasi-Periodic Patterns in Islamic Architecture. Acta Crystallographica. March. 68. 235–243. doi:10.1107/S010876731104774X. Aminppour, A. & Olia, M.R & Abuee, R & Hajebi, B. (2016). The Presentation of Two New Methods in Drawing Girih: A Comparison Study. Journal of Iranian Architecture & Urbanism (JIAU). Spring and Summer. 1. doi: 10.30475/isau.2017.62018. Anbari Yazdi, F. (2017). Geometry of Designs. Tehran: Iran Educational Books Publishing Company. Bonner, J. (2016). The Historical Significance of the Geometric Designs in the Northeast Dome Chamber of the Friday Mosque at Isfahan. Nexus Network Journal. November. 1. 55–103. doi:10.1007/s00004-015-0275-3. Bonner, J. (2021). Islamic Geometric Patterns. (Translated A. Nejad Ebrahimi & A. Azizpour Shoubi). Tabriz: Islamic Art University. Broug, E. (2013). Islamic Geometric Design. London: Thames & Hudson. Castera, J.-M. (2021). TOND to TOND: Self-Similarity of Persian TOND Patterns, Through the Logic of the X-Tiles. Handbook of Mathematics of the Arts and Sciences. doi:10.1007/978-3-319-57072-3_58. Critchlow, K. (1976). Islamic Patterns: An Analytical and Cosmological Approach. London: thames and Hudson. Cromwell, P. R. (2010). Islamic Geometric Designs from the Topkapı Scroll II: A Modular Design System. Journal of Mathematics and the Arts. August. 3. 119-136, DOI: 10.1080/17513470903311685. Cromwell, P. R. (2012). Analysis of a Multilayered Geometric Pattern from the Friday Mosque in Yazd. Journal of Mathematics and the Arts. February. 4. doi:10.1080/17513472.2012.736816. Deheshti, M., Khosh Nejad, M., & Mannan Raeesi, M. (2019). A New Method for Depicting the Motifs of Acute and Obtuse 10 Point Girih. Negareh Journal. October. 51. 53-63. doi: 10.22070/negareh.2019.3481.1947. El-Said, I. & Parman, A. (1989). Geometric Concepts in Islamic Art. Portland: Dale Seymour. Grube, E. J., & Michell, G. (1995). Architecture of the Islamic World: Its History and Social Meaning: with A Complete Survey of Key Monuments and 758 Illustrations. UK: Thames and Hudson. Grunbaum, B., & Shephard, G. C. (1987). Tilings and Patterns. New York: W.H. Freeman. Gulyar, M. (2021). Gireh Book, The Method of Design Gireh in Iranian Islamic Architecture. Tehran: Miras Ahle Qalam. Hankin, E. (1925). The Drawing of Geometric Patterns in Saracenic Art. Calcutta: Government of India. Retrieved from https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=The+Drawing+of+Geometric+Patterns+in+Saracenic+Art.+Memoires+of+the+Archaeological+Society+of+India&btnG. Helly, S. A. (1986). Gireh and Arch in Islamic Architecture. Kashan: Heli. Jablan, S. V. (2002). Symmetry, Ornament and Modularity. On Series on Knots and Everything (Vol. 30). Singapore: World Scientific. doi:10.1142/5031. Kaplan, C. S., & Salesin, D. H. (2004). Islamic Star Patterns in Absolute Geometry. ACM Transactions on Graphics. April. 2. 97–119. doi:10.1145/990002.990003. Kappraff, J. (2001). Connections: The Geometric Bridge Between Art and Science. American Journal of Physics. Singapore: World Scientific. Lee. A. J. (1987). Islamic Star Patterns. Muqarnas. Retrieved from https://www.jstor.org/stable/1523103. Lorzadeh, H. (1996). Ehya-ye Honar Ha-ye Az Yad Rafteh (Revival of Forgotten Arts). Tehran: Mola. Mahr al-Naghsh, M. (nd). Designing and Execution of Motif in Iranian Tiling of the Islamic Period. Makinejad, M. (2009). History of Iranian Art in the Islamic Period: Architectural Decorations. Tehran: Samt. Makovicky, E. (2016). Symmetry: Through the eyes of old masters. Symmetry: Through the Eyes of Old Masters. Berlin/Boston: Walter de Gruyter GmbH. doi:10.1080/0889311x.2017.1286333. Necipoğlu, G. (2017). The Arts of Ornamental Geometry. The Arts of Ornamental Geometry. BRILL. doi:10.1163/9789004315204. Necipoğlu, G., & Al-Asad, M. (1995). The Topkapı Scroll: Geometry and Ornament in Islamic Architecture: Topkapı Palace Museum Library MSNo Title. Los_Angeles: Getty Center for the History of Art and the Humanities. doi:9780892363353. Nejad Ebrahimi, A., & Azizpour Shoubi, A. (2020). The Projection Strategies of Gireh on the Iranian Historical Domes. Mathematics Interdisciplinary Research. September. 3. 239–257. doi:10.22052/mir.2020.212903.1187. Pornadari, H. (2000). Sharabaf and his Works; Gireh and Karbandi. Tehran: Cultural Heritage Organization. Sarhangi, R. (2012). Interlocking Star Polygons in Persian Architecture: The Special Case of the Decagram in Mosaic Designs. Nexus Network Journal. June. 2. 345–372. doi:10.1007/s00004-012-0117-5. Shafaei, J. (2020). The Art of Gireh Work in Architecture and Carpentry. Tehran: Anjuman Asar and Mafakher (Association of Cultural Works and Honors). Sharbaf, A. (2006). Gireh and Karbandi. Tehran: Cultural Heritage Organization. Swoboda, E., & Vighi, P. (2016). Early Geometrical Thinking in the Environment of Patterns, Mosaics and Isometries. ICME-13 Topical Surveys. Cham: Springer International Publishing. doi:10.1007/978-3-319-44272-3. Valibeig, N., Nazarieh, Nooshin, & Rahravi, S. (2018). Comparing Study of Mother Girih in the Drawing Methods Domain, with Offering an Unwrtiten Method. Journal for the History of Science. July. 2. 251–274. doi:10.22059/jihs.2019.237807.371406. Wichmann, B., & Wade, D. (2017). Islamic Design: A Mathematical Approach. Mathematics and the Built Environment. (Vol. 2). Cham: Springer International Publishing. doi:10.1007/978-3-319-69977-6. Willson, J. (John S. (1983). Mosaic and Tessellated Patterns: How to Create Them with 32 Plates to Color. US: Dover Publications. Zomarshidi, H. (1986). Gireh Work in Islamic Architecture and Handicrafts. Shiraz: Shiraz University.
| ||
آمار تعداد مشاهده مقاله: 302 تعداد دریافت فایل اصل مقاله: 247 |