تعداد نشریات | 25 |
تعداد شمارهها | 908 |
تعداد مقالات | 7,477 |
تعداد مشاهده مقاله | 12,081,258 |
تعداد دریافت فایل اصل مقاله | 8,547,506 |
فعالیت زیستی عصاره جلبک های کلرلا و اسپیرولینا و زیست توده تیمار شده آن ها قبل و بعد از پروتئولیز | ||
زیست شناسی کاربردی | ||
مقاله 9، دوره 36، شماره 2 - شماره پیاپی 76، شهریور 1402، صفحه 141-159 اصل مقاله (1.43 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22051/jab.2023.43391.1559 | ||
نویسندگان | ||
طیبه هادی توران پشتی1؛ فخری السادات حسینی* 2؛ فاطمه صفاخواه1 | ||
1کارشناسی ارشد زیست فناوری میکروبی، دانشکده علوم زیستی، دانشگاه الزهراء | ||
2استادیار بیوتکنولوژی . دانشکده علوم زیستی . دانشگاه الزهرا (س) | ||
چکیده | ||
مقدمه: میکروجلبکها ارگانیسمهایی با متابولیتهای متنوع و با ارزش هستند و دو میکروجلبک اسپیرولینا و کلرلا به دلیل دارا بودن مقادیر بالای پروتئین بسیار مورد توجه قرار گرفتهاند. روش کار: در این مطالعه پس از کشت میکروجلبکهای اسپیرولینا و کلرلا، از آنها عصارهگیری شد و همچنین به وسیله سونیکاتور پروتئین آنها استخراج شده و تحت هیدرولیز آنزیمی با دو آنزیم آلکالین پروتئاز و پپسین قرار گرفتند و با استفاده از تست DPPH خاصیت آنتی اکسیدانی آنها مورد سنجش قرار گرفت. همچنین خاصیت ضد تکثیری پروتئینهای میکروجلبکهای اسپیرولینا و کلرلا قبل و بعد از هیدرولیز آنزیمی با دو لاین سلولی سرطانی MCF-7 و Caco-2 و خاصیت ضد میکروبی با دو باکتری اشریشیاکلی و استافیلوکوکوس اورئوس مورد سنجش قرار گرفت. نتیجه: میزان زنده مانی سلولهای سرطانی MCF-7پس از تیمار 48 ساعته با غلظت 200میکروگرم بر میلی لیتر پروتئین هیدرولیز شده اسپیرولینا و کلرلا به ترتیب 60/21 درصد و 65/37 درصد و این میزان برای سلول سرطانی Caco-2 به ترتیب 63/23 درصد و 48/26 درصد کاهش یافته است. همچنین نتایج نشان داد که هیدرولیز پروتئین در بهبود خواص آنتی اکسیدانی، ضد تکثیری و ضد میکروبی تأثیر مثبت داشته است. | ||
کلیدواژهها | ||
آنتی اکسیدانی؛ آلکالین پروتئاز؛ پپسین؛ ضد میکروبی؛ ضد تکثیر سلولی؛ ضد سرطان | ||
عنوان مقاله [English] | ||
Comparison of biological activity in extracts from Chlorella and Spirulina alga the related algal biomass before and after proteolysis | ||
نویسندگان [English] | ||
Taibeh Hadi Turan back1؛ Fakhri Sadat Hosseini2؛ fatemeh safakhah1 | ||
1Master's Degree in Microbial Biotechnology, Faculty of Biological Sciences, Al Zahra University | ||
2Assistant Professor، Department of Biotechnology, Faculty of Biological Science | ||
چکیده [English] | ||
Introduction: Microalgae are organisms with diverse and valuable metabolites, and two microalgae, spirulina and chlorella, have received much attention due to their high protein content. Method: In this study, after the cultivation of spirulina and chlorella microalgae, they were extracted and their protein was extracted by sonicator and subjected to enzymatic hydrolysis with two enzymes, alkaline protease and pepsin, and using the test DPPH and their antioxidant properties were measured. Also, antiproliferative property with two cancer cell lines MCF-7 and Caco-2 and antimicrobial property with two bacteria Escherichia coli and Staphylococcus aureus, proteins of spirulina and chlorella microalgae were measured before and after enzymatic hydrolysis. Result: The survival rate of MCF-7 cancer cells after 48-hour treatment with a concentration of 200 µg/ml hydrolyzed protein of S.platensis and C.vulgaris was 21.60% and 37.65%, respectively, and this amount has decreased for Caco-2 cancer cells by 23.63% and 26.48%, respectively.. Also, the results showed that protein hydrolysis had a positive effect on improving antioxidant, antiproliferative and antimicrobial properties | ||
کلیدواژهها [English] | ||
antioxidant, alkaline protease, pepsin, antimicrobial, anti-cell proliferation, anticancer | ||
سایر فایل های مرتبط با مقاله
|
||
مراجع | ||
Bagheri, Shabnam, and Masoumizadeh, Sayeda Zahra. (2015). Investigating the growth of Chlorella sp microalgae in Conway and TMRL culture medium in different waters. Wetland Ecobiology, 8(30), 95-104. SID. https://sid.ir/paper/505646/fa . (In Persian) Bermejo, P., Piñero, E., & Villar, Á. M. (2008). Iron-chelating ability and antioxidant properties of phycocyanin isolated from a protean extract of Spirulinaplatensis. Food chemistry, 110(2), 436-445. https://doi.org/10.1016/j.foodchem.2008.02.021 Chu, W. L. (2012). Biotechnological applications of microalgae. International e-Journal of Science, Medicine & Education (IeJSME), 6(1), S24-S37. DOI:10.56026/imu.6.Suppl1.S24
Choonawala, B. B. (2007). Spirulina production in brine effluent from cooling towers (Doctoral dissertation). https://doi.org/10.51415/10321/134
Cunha, S. A., & Pintado, M. E. (2022). Bioactive peptides derived from marine sources: Biological and functional properties. Trends in Food Science & Technology, 119, 348-370. https://doi.org/10.1016/j.tifs.2021.08.017
de Morais, M. G., Vaz, B. D. S., de Morais, E. G., & Costa, J. A. V. (2015). Biologically active metabolites synthesized by microalgae. BioMed research international, 2015. https://doi.org/10.1155/2015/835761
Enyidi, U. D. (2017). Chlorella vulgaris as protein source in the diets of African catfish Clarias gariepinus. Fishes, 2(4), 17. https://doi.org/10.3390/fishes2040017
Ferdous, U. T., & Yusof, Z. N. B. (2021). Medicinal prospects of antioxidants from algal sources in cancer therapy. Frontiers in Pharmacology, 12. https://doi.org/10.3389/fphar.2021.593116
Forutan, M., Hasani, M., Hasani, S., & Salehi, N. (2023). Antioxidative Activity and Functional Properties of Enzymatic Protein Hydrolysate of Spirulina platensis. Journal of Food Biosciences and Technology, 13(1), 75-89. DOI:10.30495/jfbt.2022.63017.10281
Gargouri, M., Magné, C., & el Feki, A. (2016). Hyperglycemia, oxidative stress, liver damage and dysfunction in alloxan-induced diabetic rat are prevented by Spirulina supplementation. Nutrition Research, 36(11), 1255–1268. https://doi.org/10.1016/j.nutres.2016.09.011
Gad, A. S., Khadrawy, Y. A., El-Nekeety, A. A., Mohamed, S. R., Hassan, N. S., & Abdel-Wahhab, M. A. (2011). Antioxidant activity and hepatoprotective effects of whey protein and Spirulina in rats. Nutrition, 27(5), 582-589. DOI: 10.1016/j.nut.2010.04.002
Irvani Mohajeri, Rahela, Mirzaei, Mehta, and Hazari, Hamida. (2018). Investigating the effect of enzyme type and hydrolysis time of Bertolide antioxidant peptides from Spirulina platensis protein. New technologies in the food industry, 6(4), 581-597. SID. https://sid.ir/paper/258688/fa. (In Persian)
Juárez-Portilla, C., Olivares-Bañuelos, T., Molina-Jiménez, T., Sánchez-Salcedo, J. A., Del Moral, D. I., Meza-Menchaca, T., ... & Zepeda, R. C. (2019). Seaweeds-derived compounds modulating effects on signal transduction pathways: A systematic review. Phytomedicine, 63, 153016. https://doi.org/10.1016/j.phymed.2019.153016
Khazraei-Moradian, S., Andalib, A., Ganjalikhani-Hakemi, M., Safari, Z., Zare, A., & Kardar, G. A. (2014). The effect of protein extract of licorice root in proliferation of HT-29 and CT26 cancer cell lines. Journal of Isfahan Medical School, 32(298), 1338-1346.
Lee, J., Park, A., Kim, M. J., Lim, H. J., Rha, Y. A., & Kang, H. G. (2017). Spirulina extract enhanced a protective effect in type 1 diabetes by anti-apoptosis and anti-ROS production. Nutrients, 9(12). https://doi.org/10.3390/nu9121363
Lopes, G., Andrade, P. B., & Valentão, P. (2016). Phlorotannins: Towards new pharmacological interventions for diabetes mellitus type 2. Molecules, 22(1), 56. https://doi.org/10.3390/molecules22010056
Mirzaei, N., Kolahi, M., & Mokhtari, B. (2020). A Phytochemical Study and Comparison of the Effect of Citrullus Colocynthis Extracts on Colon Cancer Cells Caco-2. Qom University of Medical Sciences Journal, 14(5), 1-11.[in Persian]
Ngo, D. H., Vo, T. S., Ngo, D. N., Wijesekara, I., & Kim, S. K. (2012). Biological activities and potential health benefits of bioactive peptides derived from marine organisms. International journal of biological macromolecules, 51(4), 378-383. https://doi.org/10.1016/j.ijbiomac.2012.06.001
Ovando, C. A., Carvalho, J. C. D., Vinícius de Melo Pereira, G., Jacques, P., Soccol, V. T., & Soccol, C. R. (2018). Functional properties and health benefits of bioactive peptides derived from Spirulina: A review. Food reviews international, 34(1), 34-51.
Rajasekaran C., Ajeesh C., Balaji S., Shalini M., Siva R., Das R., Fulzele D and Kalaivani T. 2015. Effect of Modified Zarrouk’s Medium on Growth of Different Spirulina Strains, Agriculture Technology and Biological Sciences, 13(1): 67-75.
Safafar, H., Van Wagenen, J., Møller, P., & Jacobsen, C. (2015). Carotenoids, phenolic compounds and tocopherols contribute to the antioxidative properties of some microalgae species grown on industrial wastewater. Marine drugs, 13(12), 7339-7356. https://doi.org/10.3390/md13127069
Sathasivam, R., Radhakrishnan, R., Hashem, A., & Abd_Allah, E. F. (2019). Microalgae metabolites: A rich source for food and medicine. In Saudi Journal of Biological Sciences (Vol. 26, Issue 4, pp. 709–722). Elsevier B.V. https://doi.org/10.1016/j.sjbs.2017.11.003
Safi, C., Zebib, B., Merah, O., Pontalier, P. Y., & Vaca-Garcia, C. (2014). Morphology, composition, production, processing and applications of Chlorella vulgaris: A review. In Renewable and Sustainable Energy Reviews (Vol. 35, pp. 265–278). Elsevier Ltd. https://doi.org/10.1016/j.rser.2014.04.007
Sadeghi, S., Jalili, H., Ranaei Siadat, S. O., & Sedighi, M. (2018). Anticancer and antibacterial properties in peptide fractions from hydrolyzed spirulina protein. Journal of Agricultural Science and Technology, 20(4), 673-683.
Sun, Y., Chang, R., Li, Q., & Li, B. (2016). Isolation and characterization of an antibacterial peptide from protein hydrolysates of Spirulina platensis. European Food Research and Technology, 242, 685-692. https://doi.org/10.1007/s00217-015-2576-x
Sedighi, M., Jalili, H., RANAEI, S. S. O., & Amrane, A. (2016). Potential health effects of enzymatic protein hydrolysates from Chlorella vulgaris.
Sorokin, Constantine, and Robert W. Krauss. "The Effects of Light Intensity on the Growth Rates of Green Algae." Plant physiology 33, no. 2 (1958): 109. doi: 10.1104/pp.33.2.109
Sheih, I. C., Wu, T. K., & Fang, T. J. (2009). Antioxidant properties of a new antioxidative peptide from algae protein waste hydrolysate in different oxidation systems. Bioresource Technology, 100(13), 3419-3425. https://doi.org/10.1016/j.biortech.2009.02.014
Thiagarajan, S. K., Rama Krishnan, K., Ei, T., Husna Shafie, N., Arapoc, D. J., & Bahari, H. (2019). Evaluation of the Effect of Aqueous Momordica charantia Linn. Extract on Zebrafish Embryo Model through Acute Toxicity Assay Assessment. Evidence-Based Complementary and Alternative Medicine, 2019. https://doi.org/10.1155/2019/9152757
Tejano, L. A., Peralta, J. P., Yap, E. E. S., & Chang, Y. W. (2019). Bioactivities of enzymatic protein hydrolysates derived from Chlorella sorokiniana. Food science & nutrition, 7(7), 2381-2390. https://doi.org/10.1002/fsn3.1097
Tagvi Takyar, M. B., Mir Babak, Hachit Khajovi, Safari. (2017) Comparison of the antioxidant properties of alcoholic extracts of Chlorella vulgaris and Spirulina Platensis in laboratory conditions. Caspian Sea Aquatic Journal, 2 (Winter 1996). 11-18
Yücetepe, A., & Özçelik, B. Bioactive Peptides Isolated from Microalgae Spirulina platensis and their Biofunctional Activities. Academic Food Journal/Akademik GIDA.[Internet] 2016 [citado: 1 de mayo de 2020]; 14 (4).
Yu, J., Hu, Y., Xue, M., Dun, Y., Li, S., Peng, N., ... & Zhao, S. (2016). Purification and identification of antioxidant peptides from enzymatic hydrolysate of Spirulina platensis. Journal of Microbiology and Biotechnology, 26(7), 1216-1223. http://dx.doi.org/10.4014/jmb.1601.01033
Zanganeh, Negin, Barzegar, Hassan, Alizadeh Behbahani, Behrouz, & Mehrania, Mohammadamin. (2019). Investigating the effect of different levels of Spirulina platensis microalgae on nutritional, physicochemical and sensory characteristics of sponge cake. Iran Journal of Food Science and Industry Research, 16(2), 207-220. doi: 10.22067/ifstrj.v16i2.81859. (In Persian)
| ||
آمار تعداد مشاهده مقاله: 124 تعداد دریافت فایل اصل مقاله: 72 |