تعداد نشریات | 25 |
تعداد شمارهها | 932 |
تعداد مقالات | 7,652 |
تعداد مشاهده مقاله | 12,493,018 |
تعداد دریافت فایل اصل مقاله | 8,884,699 |
مقالۀ پژوهشی: مطالعه چگالی تراز و کمیتهای ترمودینامیکی ایزوتوپهای سنگین و فوق سنگین 256Cf98 و290Fl114 برپایه : TD(P〖-E〗_shell) -BSFGM اثرات اسپینی، پاریته، چرخشی و ارتعاشی | ||
فیزیک کاربردی ایران | ||
دوره 14، شماره 4 - شماره پیاپی 39، دی 1403، صفحه 68-85 اصل مقاله (2.26 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22051/ijap.2024.46594.1394 | ||
نویسندگان | ||
اصغر خوی* 1؛ محمد رضا پهلوانی2 | ||
1دانشجوی دکترا، گروه فیزیک هسته ای،دانشکده علوم پایه، دانشگاه مازندران | ||
2استاد، گروه فیزیک هسته ای،دانشکده علوم پایه، دانشگاه مازندران | ||
چکیده | ||
تعداد ترازهای انرژی در واحد انرژی (MeV) یعنی چگالی تراز هسته از کمیتهای کلیدی در فیزیک هستهای است. این پژوهش بر محاسبه چگالی تراز و کمیت چگالی تراز با استفاده از روش گاز فرمی جابهجا شده برای ایزوتوپهای سنگین و فوقسنگین و متمرکزشده است. کمیت چگالی تراز با استفاده از روش نیمهکلاسیکی و استفاده از پتانسیل وودز- ساکسون محاسبه شده است. اثرات انرژی زوجیت و اثرات پوسته وابسته به دما بر چگالی تراز و کمیتهای ترمودینامیکی همانند آنتروپی، دمای هسته و گرمای ویژه هسته مورد مطالعه قرارگرفته است. همچنین اثرات در نظر گرفتن اسپین و پاریته هسته و حرکتهایی همچون دوران و نوسان هسته بر این کمیتها بررسی شده است. نمودار تغییرات چگالی تراز هسته، آنتروپی هسته، دمای هسته و گرمای ویژه هسته بهصورت تابعی از انرژی تحریکی هسته برای نشان دادن تأثیر اسپین، پاریته، حرکتهای دورانی و نوسانی هسته بر این کمیتها رسم شده است. همانگونه که این منحنیها نشان میدهند، در نظر گرفتن این اثرات سبب تغییر در این کمیتها میگردد، هرچند روند کلی منحنیها را تغییر نمیدهد. همچنین نمودار تغییرات گرمای ویژه تحت اثرات ارتعاشی و چرخشی و اثرات اسپینی و پاریته و اثرات پوسته و انرژی زوجیت وابسته به دما بهصورت تابعی از انرژی برانگیختگی بهخوبی شکسته شدن اولین جفت نوکلئونی را که به ترتیب در انرژیهای E=2.948 Mev و E=3.04 Mev برای ایزوتوپهای و رخ میدهد را نشان میدهد. | ||
کلیدواژهها | ||
چگالی تراز؛ کمیت های ترمودینامیکی؛ آنتروپی؛ دما؛ ظرفیت گرمایی | ||
عنوان مقاله [English] | ||
Study of the Level Density and Thermodynamic Quantities for 256Cf98 and 290Fl114 Heavy and Superheavy Isotopes based on TD(P-E_shell)-BSFGM Considering the Effects of Spin, Parity, Rotation and Vibration | ||
نویسندگان [English] | ||
Asghar Khooy1؛ Mohammad Reza Pahlavani2 | ||
1PhD Student, Department of Nuclear Physics, Faculty of Basic Science, University of Mazandaran, Iran | ||
2Professor, Department of Nuclear Physics, Faculty of Basic Science, University of Mazandaran, Iran | ||
چکیده [English] | ||
Nuclear level density is a critical parameter in nuclear physics as it represents the number of energy levels per unit of energy (MeV) in a nucleus. This study calculates the level density and level density parameter for heavy and super heavy isotopes and based on the back-shifted Fermi gas method. The level density parameter is determined through a semi-classical approach using the nuclear Woods-Saxon potential. This research investigates the influence of pairing energy, and temperature-dependent shell effects on level density and thermodynamic quantities such as entropy, nuclear temperature, and nuclear-specific heat. Furthermore, the research explores the effects of nuclear spin, parity, rotational, and vibrational motion on these quantities. A graphical representation is used to illustrate the variations in nuclear level density, entropy, temperature, and specific heat as a function of nuclear excitation energy, highlighting the influence of nuclear spin, parity, and rotational and vibrational motions on them. The results show that considering these effects leads to changes in the parameters studied without altering the overall trends. Additionally, a specific heat diagram demonstrates the effects of vibrational and rotational motions, spin and parity effects, shell effects, and temperature-dependent pairing energy on excitation energy, revealing the breaking of the first nucleon pair at energies of E=2.948 MeV and E=3.04 MeV for isotopes and , respectively. | ||
کلیدواژهها [English] | ||
Level Density, Thermodynamic Quantities, Temperature, Entropy, Heat Capacity | ||
مراجع | ||
[1] Santhosh Kumar, S., "Level density and shape changes in excited sd shell nuclei", Pramana 71, 175-180, 2008. https://doi.org/ 10.1007/s12043-008-0150-9 [2] Caurier, E., Martínez-Pinedo, G., Nowacki, F., Poves, A. and Zuker, A.P., "The shell model as a unified view of nuclear structure." Reviews of modern Physics 77(2), 427-488, 2005. https://doi.org/10.1103/RevModPhys.77.427 [3] Bohr, A.N. and Mottelson, B.R., "Nuclear Structure (in 2 volumes) ", World Scientific Publishing Company, 1998. [4] Dilg, W., Schantl, W., Vonach, H. and Uhl, M., "Level density parameters for the back-shifted fermi gas model in the mass range 40< A< 250", Nuclear Physics A 217(2), 269-298, 1973. https://doi.org/10.1016/0375-9474(73)90196-6 [5] Gilbert, A. and Cameron, A.G.W., "A composite nuclear-level density formula with shell corrections", Canadian Journal of Physics 43(8), 1446-1496, 1965. https://doi.org/10.1139/p65-139. [6] Alhassid, Y., Bertsch, G.F. and Fang, L., "Nuclear level statistics: Extending shell model theory to higher temperatures", Physical Review C—Nuclear Physics 68(4), 044322, 2003. https://doi.org/10.1103/PhysRevC.68.044322 [7] Razavi, R., Behkami, A.N. and Dehghani, V., "Pairing phase transition and thermodynamical quantities in 148,149 Sm", Nuclear Physics A 930, 57-62, 2014. https://doi.org/10.1016/j.nuclphysa.2014.07.016 [8] Attias, H. and Alhassid, Y., "The perturbed static path approximation at finite temperature: observables and strength functions", Nuclear physics A 625(3): 565-597, 1997. https://doi.org/10.1016/S0375-9474(97)00486-7 [9] Bethe, H.A., "An attempt to calculate the number of energy levels of a heavy nucleus", Physical Review 50(4), 332, 1936. DOI: https://doi.org/10.1103/PhysRev.50.332 [10] Moretto, L.G., "Thermodynamical properties of a paired nucleus with a fixed number of quasi-particles", Nuclear Physics A 243(1), 77-99, 1975. https://doi.org/10.1016/0375-9474(75)90022-6 [11] Guttormsen, M., Jurado, B., Wilson, J.N., Aiche, M., Bernstein, L.A., Ducasse, Q., Giacoppo, F., Görgen, A., Gunsing, F., Hagen, T.W. and Larsen, A.C., "Constant-temperature level densities in the quasicontinuum of Th and U isotopes", Physical Review C—Nuclear Physics 88(2), 024307, 2013. https://doi.org/10.1103/PhysRevC.88.024307 [12] Guttormsen, M., Bernstein, L.A., Görgen, A., Jurado, B., Siem, S., Aiche, M., Ducasse, Q., Giacoppo, F., Gunsing, F., Hagen, T.W. and Larsen, A.C., "Scissors resonance in the quasicontinuum of Th, Pa, and U isotopes", Physical Review C 89(1), 014302, 2014. https://doi.org/10.1103/PhysRevC.89.014302 [13] Schiller, A., Bergholt, L., Guttormsen, M., Melby, E., Rekstad, J. and Siem, S., "Extraction of level density and γ strength function from primary γ spectra", Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 447(3), 498-511, 2000. https://doi.org/10.1016/S0168-9002(99)01187-0 [14] Pahlavani, M.R. and Dinan, M.M., "Thermal properties of^ 172 Yb 172 Yb and^ 162 Dy 162 Dy isotopes in the back-shifted Fermi gas model with temperature-dependent pairing energy", Pramana 93, 1-10, 2019. https://doi.org/10.1007/s12043-019-1799-y [15] Bucurescu, D. and von Egidy, T., "Systematics of nuclear level density parameters", Journal of Physics G: Nuclear and Particle Physics (10), S1675, 2005. https://doi.org/10.1103/PhysRevC.72.044311 [16] Mengoni, A. and Nakajima, Y., "Fermi-gas model parametrization of nuclear level density", Journal of Nuclear Science and Technology 31(2), 151-162, 1994. https://doi.org/10.1080/18811248.1994.9735131 [17] Wang, M., Huang, W.J., Kondev, F.G., Audi, G. and Naimi, S., "The AME 2020 atomic mass evaluation (II). Tables, graphs and references", Chinese Physics C 45(3), 030003, 2021. https://doi.org/10.1088/1674-1137/abddaf [18] Von Egidy, T., Schmidt, H.H. and Behkami, A.N., "Nuclear level densities and level spacing distributions: Part II", Nuclear Physics A 481(2), 189-206, 1988. https://doi.org/10.1016/0375-9474(88)90491-5 [19] Madland, D.G. and Nix, J.R., "New model of the average neutron and proton pairing gaps", Nuclear Physics A 476(1), 1-38, 1988. https://doi.org/10.1016/0375-9474(88)90370-3 [20] Ivanyuk, F.A., Ishizuka, C., Usang, M.D. and Chiba, S., "Temperature dependence of shell corrections", Physical Review C 97(5), 054331, 2018. https://doi.org/10.1103/PhysRevC.97.054331 [21] Alavi, S.A. and Dehghani, V., "Back shifted Fermi gas model with temperature dependent pairing energy: Thermal properties of 98 Mo", International Journal of Modern Physics E 25(09), 1650065, 2016. https://doi.org/10.1142/S0218301316500658 [22] Pahlavani, M.R., Alavi, S.A. and Tahanipour, N., "Effect of nuclear deformation on the potential barrier and alpha-decay half-lives of superheavy nuclei", Modern Physics Letters A 28(16), 1350065, 2013. https://doi.org/10.1142/S021773231350065X [23] Möller, P., Sierk, A.J., Ichikawa, T. and Sagawa, H., "Nuclear ground-state masses and deformations: FRDM (2012)", Atomic Data and Nuclear Data Tables 109, 1-204, 2016. https://doi.org/10.1016/j.adt.2015.10.002 [24] Koning, A.J., Hilaire, S. and Goriely, S., "Global and local level density models." Nuclear Physics A 810(1-4), 13-76, 2008. https://doi.org/10.1016/j.nuclphysa.2008.06.005 [25] Goriely, S., "A new nuclear level density formula including shell and pairing correction in the light of a microscopic model calculation", Nuclear Physics A 605(1), 28-60, 1996. https://doi.org/10.1016/0375-9474(96)00162-5 | ||
آمار تعداد مشاهده مقاله: 424 تعداد دریافت فایل اصل مقاله: 220 |